PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    Anticholinergic Gastrointestinal Antispasmodics

    DEA CLASS

    Rx

    DESCRIPTION

    Parenteral and oral antimuscarinic and anticholinergic agent
    Used for diarrhea-predominant irritable bowel syndrome
    Boxed warning: do not use in infants less than 6 months of age due to severe side effects

    COMMON BRAND NAMES

    Bentyl

    HOW SUPPLIED

    Bentyl/Dicyclomine/Dicyclomine Hydrochloride Intramuscular Inj Sol: 1mL, 10mg
    Bentyl/Dicyclomine/Dicyclomine Hydrochloride Oral Cap: 10mg
    Bentyl/Dicyclomine/Dicyclomine Hydrochloride Oral Tab: 20mg
    Dicyclomine/Dicyclomine Hydrochloride Oral Sol: 5mL, 10mg

    DOSAGE & INDICATIONS

    For the treatment of irritable bowel syndrome and other functional disturbances of GI motility.
    Oral dosage
    Adults

    Initially, 20 mg PO 4 times per day. After the first week, the dose may be increased as tolerated. Max: 40 mg PO 4 times daily unless side effects limit dose escalation. If efficacy is not achieved within 2 weeks of therapy, or if side effects develop which require doses less than 80 mg/day PO, the manufacturer recommends drug discontinuation. There are no studies on the safety of doses greater than 80 mg/day for periods longer than 2 weeks. Increased sensitivity to the anticholinergic effects of the drug may be more likely to occur in geriatric adults than younger adults.Therefore, caution is advisable in the geriatric population.

    Geriatric

    Initially, 20 mg PO 4 times per day. After the first week, the dose may be increased if tolerated. Max: 40 mg PO 4 times daily unless side effects limit dose escalation. If efficacy is not achieved within 2 weeks of therapy, or if side effects develop which require doses less than 80 mg/day, the manufacturer recommends drug discontinuation. There are no studies on the safety of doses greater than 80 mg/day for periods longer than 2 weeks. Increased sensitivity to the anticholinergic effects of the drug may be more likely to occur in geriatric adults than younger adults. therefore, caution is advisable in this patient population.

    Intramuscular dosage
    Adults

    10 mg to 20 mg IM 4 times per day. The intramuscular injection is to be used only for 1 or 2 days when the patient cannot take oral medication. The intramuscular injection is about twice as bioavailable as oral dosage forms. Max: 80 mg/day IM.

    MAXIMUM DOSAGE

    Adults

    160 mg/day PO; 80 mg/day IM.

    Elderly

    160 mg/day PO

    Adolescents

    160 mg/day PO.

    Children

    40 mg/day PO.

    Infants

    >= 6 months: 20 mg/day PO.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    Specific guidelines are not available. The manufacturer warns to use with caution in patients with hepatic disease.

    Renal Impairment

    Specific guidelines are not available. The manufacturer warns to use with caution in patients with renal disease.

    ADMINISTRATION

    Oral Administration

    May be administered without regard to meals.

    Oral Liquid Formulations

    Oral solution:
    Dilute with an equal volume of water prior to administration.

    Injectable Administration

    Visually inspect parenteral products for particulate matter and discoloration prior to administration whenever solution and container permit.

    Intramuscular Administration

    Inject into a large muscle mass. Aspirate prior to injection to avoid injection into a blood vessel.
    Replace with oral therapy as soon as possible.

    STORAGE

    Generic:
    - Avoid excessive heat (above 104 degrees F)
    - Store at controlled room temperature (between 68 and 77 degrees F)
    Bentyl:
    - Protect from freezing
    - Store at controlled room temperature (between 68 and 77 degrees F)

    CONTRAINDICATIONS / PRECAUTIONS

    General Information

    Dicyclomine should be used with caution in hot or humid environments because it can cause heat prostration (fever and heat stroke) due to drug-induced inhibition of the sweating mechanism, although the effects of dicyclomine on the sweat gland are less than those of atropine.

    Intravenous administration

    Dicyclomine injection is for intramuscular administration only; do not give via intravenous administration.

    Anticholinergic medications

    The anticholinergic effects of dicyclomine may be significant and are additive with other anticholinergic medications. This is especially true for the older adult, but may also occur with any patient. Consider the anticholinergic burden of all applicable medication therapies and consider the potential for additive side effects.

    GI obstruction, ileus, toxic megacolon, ulcerative colitis

    Dicyclomine is contraindicated in severe ulcerative colitis or if there is GI obstruction. Dicyclomine exerts its effects on the smooth muscle of the GI tract and may exacerbate ulcerative colitis, toxic megacolon, and intestinal atony. Large doses of dicyclomine can suppress intestinal motility to such an extent that a paralytic ileus is produced. Dicyclomine should be used with caution in these conditions.

    Esophagitis, gastroesophageal reflux disease (GERD), hiatal hernia

    Dicyclomine is contraindicated by the manufacturer in patients with reflux esophagitis and should be used with caution in patients gastroesophageal reflux disease (GERD) or hiatal hernia. Antimuscarinics decrease gastric motility and relax the lower esophageal sphincter. These effects promote gastric retention and aggravate reflux in these patients.

    Glaucoma

    Dicyclomine is contraindicated in patients with glaucoma because of the risk of drug-induced cycloplegia and mydriasis that would increase intraocular pressure.

    Cardiac arrhythmias, coronary artery disease, heart failure, hemorrhagic shock, hypertension

    Although dicyclomine produces less cardiovascular effects than atropine, dicyclomine should nevertheless be used with caution in patients with coronary artery disease, cardiac arrhythmias, or congestive heart failure because the drug can aggravate these conditions. Antimuscarinics should also be used with caution in patients with hypertension since they have some actions on the heart that can exacerbate this condition. Dicyclomine is contraindicated in patients with unstable cardiovascular status in acute hemorrhagic shock.

    Myasthenia gravis, peripheral neuropathy

    Dicyclomine is contraindicated in patients with myasthenia gravis. It should be used with caution in peripheral neuropathy because dicyclomine can aggravate this condition.

    Prostatic hypertrophy, urinary tract obstruction

    Dicyclomine is contraindicated in patients with urinary tract obstruction. It should be used with caution in benign prostatic hypertrophy (BPH) because dicyclomine can aggravate the symptoms of this condition, including urinary retention.

    Hepatic disease, renal disease

    The manufacturer warns that dicyclomine should be used with caution in patients with hepatic disease or renal disease. The exact elimination pathways for dicyclomine are not known. Approximately 80% of an oral dose of dicyclomine is excreted in the urine and about 9% in the feces.

    Hyperthyroidism

    Use dicyclomine with caution in patients with hyperthyroidism because dicyclomine can aggravate the symptoms of this condition.

    Driving or operating machinery

    Patients should be warned that use of dicyclomine can produce drowsiness or blurred vision, so they should avoid driving or operating machinery while taking this medication.

    Contact lenses

    The anticholinergic effects of dicyclomine may make the eyes dry. This can cause an increased lens awareness, or blurred vision for wearers of contact lenses. The use of lubricating drops may be necessary, or in severe cases discontinued use of contact lenses while taking dicyclomine.

    Children, infants, neonates

    Dicyclomine is contraindicated in neonates and infants younger than 6 months of age. Serious respiratory symptoms, seizures, syncope, pulse-rate fluctuations, muscular hypotonia, or coma have followed administration of dicyclomine syrup to infants. Respiratory symptoms include dyspnea, breathlessness, shortness of breath, respiratory collapse, apnea, and asphyxia. The safe use of dicyclomine in infants, children, and adolescents has not been established by the manufacturer.

    Pregnancy

    No adequate and well controlled studies have been conducted with dicyclomine in pregnant women at recommended doses of 80 to 160 mg/day. Although there are no clinical trials documenting its effect in pregnant women, epidemiologic studies did not show an increased risk of structural malformations in babies born to women who took dicyclomine at doses up to 40 mg/day during the first trimester. Additionally, reproduction studies have been performed in rats and rabbits at doses up to 33 times the maximum recommended human dose based on 160 mg/day (3 mg/kg) and have revealed no evidence of harm to the fetus due to dicyclomine. Dicyclomine was used historically as part of a 3-drug regimen (dicyclomine; doxylamine; pyridoxine) to treat nausea and vomiting during pregnancy, but the products (e.g., Bendectin, Debendox) were withdrawn from the market due to litigation. However, expert analysis of these cases concluded that the drug combination in the products was not associated with an increased risk of congenital limb defects.

    Breast-feeding

    Dicyclomine is excreted into human milk. Dicyclomine is contraindicated during breast-feeding. The use of dicyclomine in breast-feeding mothers is not recommended, due to potential serious adverse events that may occur from infant ingestion of the drug. Respiratory distress has been reported in infants aged less than 6 months who ingested dicyclomine directly (not via breast milk). In addition, anticholinergics such as dicyclomine may inhibit lactation.

    Geriatric

    Clinical experience has not identified differences in responses between geriatric and younger adults receiving dicyclomine, but the dosage should be initiated at the lower end of the adult dosage range. Older patients are more susceptible to anticholinergic effects of the drug, such as constipation, urinary retention, or the possibility of precipitating undiagnosed glaucoma. The anticholinergic effects of dicyclomine are significant and are additive with other anticholinergic medications, particularly in the elderly.[30090] [57573] According to the Beers Criteria, antispasmodics such as dicyclomine are considered potentially inappropriate medications (PIMs) in geriatric patients; avoid due to uncertain effectiveness and the high anticholinergic activity. Avoid drugs with strong anticholinergic properties in geriatric patients with the following conditions due to the potential for symptom exacerbation or adverse effects: dementia/cognitive impairment (adverse CNS effects), delirium/high risk of delirium (new-onset or worsening delirium), or lower urinary tract symptoms/benign prostatic hyperplasia in men (urinary retention or hesitancy).[63923] The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities (LTCFs). According to the OBRA guidelines, medications with anticholinergic properties, such as dicyclomine, may cause mental status changes, constipation, drowsiness, dizziness, dryness of mucous membranes, blurred vision, urinary retention, or other adverse effects that are common and problematic, especially in older individuals. The use of multiple medications with anticholinergic properties may be particularly problematic because of cumulative effects.[60742]

    ADVERSE REACTIONS

    Severe

    angioedema / Rapid / Incidence not known
    anaphylactic shock / Rapid / Incidence not known
    apnea / Delayed / Incidence not known
    asphyxia / Early / Incidence not known

    Moderate

    blurred vision / Early / 27.0-27.0
    constipation / Delayed / Incidence not known
    hallucinations / Early / Incidence not known
    amnesia / Delayed / Incidence not known
    dyskinesia / Delayed / Incidence not known
    delirium / Early / Incidence not known
    mania / Early / Incidence not known
    confusion / Early / Incidence not known
    dyspnea / Early / Incidence not known
    hypertension / Early / Incidence not known
    palpitations / Early / Incidence not known
    impotence (erectile dysfunction) / Delayed / Incidence not known
    lactation suppression / Early / Incidence not known
    cycloplegia / Early / Incidence not known

    Mild

    dizziness / Early / 40.0-40.0
    xerostomia / Early / 33.0-33.0
    nausea / Early / 14.0-14.0
    drowsiness / Early / 9.0-9.0
    asthenia / Delayed / 7.0-7.0
    vomiting / Early / Incidence not known
    dyspepsia / Early / Incidence not known
    anorexia / Delayed / Incidence not known
    abdominal pain / Early / Incidence not known
    urticaria / Rapid / Incidence not known
    rash / Early / Incidence not known
    syncope / Early / Incidence not known
    paresthesias / Delayed / Incidence not known
    weakness / Early / Incidence not known
    fatigue / Early / Incidence not known
    agitation / Early / Incidence not known
    malaise / Early / Incidence not known
    lethargy / Early / Incidence not known
    headache / Early / Incidence not known
    insomnia / Early / Incidence not known
    sneezing / Early / Incidence not known
    nasal congestion / Early / Incidence not known
    diplopia / Early / Incidence not known
    mydriasis / Early / Incidence not known
    injection site reaction / Rapid / Incidence not known

    DRUG INTERACTIONS

    Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Acetaminophen; Caffeine; Magnesium Salicylate; Phenyltoloxamine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Acetaminophen; Caffeine; Phenyltoloxamine; Salicylamide: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Acetaminophen; Chlorpheniramine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Acetaminophen; Chlorpheniramine; Dextromethorphan: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Acetaminophen; Chlorpheniramine; Phenylephrine : (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Acetaminophen; Chlorpheniramine; Phenylephrine; Phenyltoloxamine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Acetaminophen; Codeine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when codeine is used concomitantly with an anticholinergic drug. The concomitant use of codeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Acetaminophen; Dextromethorphan; Doxylamine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Acetaminophen; Diphenhydramine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Acetaminophen; Hydrocodone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Acetaminophen; Oxycodone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when oxycodone is used concomitantly with an anticholinergic drug. The concomitant use of oxycodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Acetaminophen; Pamabrom; Pyrilamine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Acetaminophen; Pentazocine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when pentazocine is used concomitantly with an anticholinergic drug. The concomitant use of pentazocine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Aclidinium: (Moderate) Although aclidinium is minimally absorbed into the systemic circulation after inhalation, there is the potential for aclidinium to have additive anticholinergic effects when administered with other anticholinergics or antimuscarinics.Per the manufaturer, avoid concomitant administration of aclidinium with other anticholinergic medications, when possible.
    Aclidinium; Formoterol: (Moderate) Although aclidinium is minimally absorbed into the systemic circulation after inhalation, there is the potential for aclidinium to have additive anticholinergic effects when administered with other anticholinergics or antimuscarinics.Per the manufaturer, avoid concomitant administration of aclidinium with other anticholinergic medications, when possible.
    Acrivastine; Pseudoephedrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Alfentanil: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when alfentanil is used concomitantly with an anticholinergic drug. The concomitant use of alfentanil and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Alosetron: (Major) Concomitant use of alosetron and anticholinergics, which can decrease GI motility, may seriously worsen constipation, leading to events such as GI obstuction, impaction, or paralytic ileus. Although specific recommendations are not available from the manufacturer, it would be prudent to avoid anticholinergics in patients taking alosetron.
    Aluminum Hydroxide: (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
    Aluminum Hydroxide; Magnesium Carbonate: (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
    Aluminum Hydroxide; Magnesium Hydroxide: (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
    Aluminum Hydroxide; Magnesium Hydroxide; Simethicone: (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
    Aluminum Hydroxide; Magnesium Trisilicate: (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
    Amantadine: (Moderate) Additive anticholinergic effects may be seen when dicyclomine is used concomitantly with other drugs that possess anticholinergic properties, such as amantadine. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur.
    Ambenonium Chloride: (Major) The muscarinic actions of ambenonium chloride can antagonize the antimuscarinic actions of dicyclomine and vice-versa.
    Amobarbital: (Moderate) Dicyclomine can cause drowsiness, so it should be used cautiously in patients receiving CNS depressants like barbiturates.
    Amoxapine: (Moderate) Depending on the specific agent, additive anticholinergic effects may be seen when amoxapine is used concomitantly with other anticholinergic agents. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive CNS effects are also possible when these drugs are combined with amoxapine.
    Antacids: (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
    Antidiarrheals: (Moderate) Both antidiarrheals and anticholinergics, such as dicyclomine, decrease GI motility. Use of these drugs together may produce additive effects on the GI track; thereby increasing the risk for toxic megacolon.
    Anxiolytics; Sedatives; and Hypnotics: (Moderate) Dicyclomine can cause drowsiness, so it should be used cautiously in patients receiving CNS depressants like anxiolytics, sedatives, and hypnotics.
    Aspirin, ASA; Butalbital; Caffeine; Codeine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when codeine is used concomitantly with an anticholinergic drug. The concomitant use of codeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Aspirin, ASA; Caffeine; Dihydrocodeine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) Additive anticholinergic effects may be seen when dicyclomine is used concomitantly with other drugs that possess anticholinergic properties, such as orphenadrine. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur.
    Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when codeine is used concomitantly with an anticholinergic drug. The concomitant use of codeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Moderate) Antacids may inhibit the oral absorption of antimuscarinics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
    Aspirin, ASA; Oxycodone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when oxycodone is used concomitantly with an anticholinergic drug. The concomitant use of oxycodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Atropine; Edrophonium: (Major) The muscarinic actions of edrophonium chloride can antagonize the antimuscarinic actions of dicyclomine and vice-versa.
    Belladonna Alkaloids; Ergotamine; Phenobarbital: (Moderate) Dicyclomine can cause drowsiness, so it should be used cautiously in patients receiving CNS depressants like phenobarbital.
    Belladonna; Opium: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when opium is used concomitantly with an anticholinergic drug. The concomitant use of opium and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Benzhydrocodone; Acetaminophen: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when benzhydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of benzhydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Benzodiazepines: (Moderate) Dicyclomine can cause drowsiness, so it should be used cautiously in patients receiving CNS depressants like benzodiazepines.
    Bismuth Subsalicylate: (Moderate) Both antidiarrheals and anticholinergics, such as dicyclomine, decrease GI motility. Use of these drugs together may produce additive effects on the GI track; thereby increasing the risk for toxic megacolon.
    Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Both antidiarrheals and anticholinergics, such as dicyclomine, decrease GI motility. Use of these drugs together may produce additive effects on the GI track; thereby increasing the risk for toxic megacolon.
    Botulinum Toxins: (Moderate) The use of systemic antimuscarinic/anticholinergic agents following the administration of botulinum toxins may result in a potentiation of systemic anticholinergic effects (e.g., blurred vision, dry mouth, constipation, or urinary retention).
    Brompheniramine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Brompheniramine; Carbetapentane; Phenylephrine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including anticholinergics. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Brompheniramine; Dextromethorphan; Guaifenesin: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Brompheniramine; Guaifenesin; Hydrocodone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Brompheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Brompheniramine; Phenylephrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Brompheniramine; Pseudoephedrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Buprenorphine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when buprenorphine is used concomitantly with an anticholinergic drug. The concomitant use of buprenorphine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Buprenorphine; Naloxone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when buprenorphine is used concomitantly with an anticholinergic drug. The concomitant use of buprenorphine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Bupropion: (Moderate) Additive anticholinergic effects may be seen when dicyclomine is used concomitantly with other drugs that possess anticholinergic properties, such as bupropion. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur.
    Bupropion; Naltrexone: (Moderate) Additive anticholinergic effects may be seen when dicyclomine is used concomitantly with other drugs that possess anticholinergic properties, such as bupropion. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur.
    Buspirone: (Moderate) Dicyclomine can cause drowsiness, so it should be used cautiously in patients receiving CNS depressants like buspirone.
    Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when codeine is used concomitantly with an anticholinergic drug. The concomitant use of codeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Butorphanol: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when butorphanol is used concomitantly with an anticholinergic drug. The concomitant use of butorphanol and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Calcium Carbonate: (Moderate) Antacids may inhibit the oral absorption of antimuscarinics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
    Calcium Carbonate; Famotidine; Magnesium Hydroxide: (Moderate) Antacids may inhibit the oral absorption of antimuscarinics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
    Calcium Carbonate; Magnesium Hydroxide: (Moderate) Antacids may inhibit the oral absorption of antimuscarinics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
    Calcium Carbonate; Risedronate: (Moderate) Antacids may inhibit the oral absorption of antimuscarinics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
    Calcium Carbonate; Simethicone: (Moderate) Antacids may inhibit the oral absorption of antimuscarinics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
    Carbetapentane; Chlorpheniramine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including anticholinergics. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Carbetapentane; Chlorpheniramine; Phenylephrine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including anticholinergics. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Carbetapentane; Diphenhydramine; Phenylephrine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including anticholinergics. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Carbetapentane; Guaifenesin: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including anticholinergics.
    Carbetapentane; Guaifenesin; Phenylephrine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including anticholinergics.
    Carbetapentane; Phenylephrine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including anticholinergics.
    Carbetapentane; Phenylephrine; Pyrilamine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including anticholinergics. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Carbetapentane; Pseudoephedrine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including anticholinergics.
    Carbetapentane; Pyrilamine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including anticholinergics. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Carbidopa; Levodopa: (Minor) Anticholinergics can potentiate the dopaminergic effects of levodopa. While some patients may benefit from this interaction, clinicians should be ready to decrease doses of levodopa if an antimuscarinic is added.
    Carbidopa; Levodopa; Entacapone: (Minor) Anticholinergics can potentiate the dopaminergic effects of levodopa. While some patients may benefit from this interaction, clinicians should be ready to decrease doses of levodopa if an antimuscarinic is added.
    Carbinoxamine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Carbinoxamine; Dextromethorphan; Pseudoephedrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Carbinoxamine; Hydrocodone; Phenylephrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Carbinoxamine; Hydrocodone; Pseudoephedrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Carbinoxamine; Phenylephrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Carbinoxamine; Pseudoephedrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Cetirizine: (Moderate) Concurrent use of cetirizine/levocetirizine with anticholinergics should generally be avoided. Coadministration may increase the risk of anticholinergic and CNS depressant-related side effects. If concurrent use is necessary, monitor for excessive anticholinergic effects, sedation, and somnolence.
    Cetirizine; Pseudoephedrine: (Moderate) Concurrent use of cetirizine/levocetirizine with anticholinergics should generally be avoided. Coadministration may increase the risk of anticholinergic and CNS depressant-related side effects. If concurrent use is necessary, monitor for excessive anticholinergic effects, sedation, and somnolence.
    Chlophedianol; Dexbrompheniramine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorcyclizine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorpheniramine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorpheniramine; Codeine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when codeine is used concomitantly with an anticholinergic drug. The concomitant use of codeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorpheniramine; Dextromethorphan: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorpheniramine; Dihydrocodeine; Pseudoephedrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorpheniramine; Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorpheniramine; Hydrocodone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorpheniramine; Hydrocodone; Phenylephrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorpheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorpheniramine; Phenylephrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorpheniramine; Pseudoephedrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Chlorpromazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including chlorpromazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
    Cholinergic agonists: (Major) The muscarinic actions of drugs known as parasympathomimetics, including both direct cholinergic receptor agonists and cholinesterase inhibitors, can antagonize the antimuscarinic actions of anticholinergic drugs, and vice versa.
    Cisapride: (Moderate) Avoid chronic administration of dicyclomine with prokinetic agents, such as cisapride, under most circumstances.Dicyclomine has antimuscarinic properties that may slow GI motility. The clinical significance of this interaction is uncertain.
    Clemastine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Clozapine: (Major) Avoid co-prescribing clozapine with other anticholinergic medicines that can cause gastrointestinal hypomotility, due to a potential to increase serious constipation, ileus, and other potentially serious bowel conditions that may result in hospitalization. Clozapine exhibits potent anticholinergic effects. Additive anticholinergic effects may be seen when clozapine is used concomitantly with anticholinergic agents. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the anticholinergic agent used.
    Codeine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when codeine is used concomitantly with an anticholinergic drug. The concomitant use of codeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Codeine; Guaifenesin: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when codeine is used concomitantly with an anticholinergic drug. The concomitant use of codeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Codeine; Guaifenesin; Pseudoephedrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when codeine is used concomitantly with an anticholinergic drug. The concomitant use of codeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Codeine; Phenylephrine; Promethazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including promethazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when codeine is used concomitantly with an anticholinergic drug. The concomitant use of codeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Codeine; Promethazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including promethazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when codeine is used concomitantly with an anticholinergic drug. The concomitant use of codeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Crofelemer: (Moderate) Pharmacodynamic interactions between crofelemer and antimuscarinics are theoretically possible. Crofelemer does not affect GI motility mechanisms, but does have antidiarrheal effects. Patients taking medications that decrease GI motility, such as antimuscarinics, may be at greater risk for serious complications from crofelemer, such as constipation with chronic use. Use caution and monitor GI symptoms during coadministration.
    Cyclizine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Cyclobenzaprine: (Moderate) Depending on the specific agent, additive anticholinergic effects may be seen when drugs with antimuscarinic properties like cyclobenzaprine are used concomitantly with other anticholinergics. Clinicians should note that additive antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Monitor for effects such as constipation and urinary retention. Additive drowsiness may also occur, depending on the interacting agent.
    Cyproheptadine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Dasiglucagon: (Major) The concomitant use of intravenous glucagon and anticholinergics increases the risk of gastrointestinal adverse reactions due to additive effects on inhibition of gastrointestinal motility. Concomitant use is not recommended.
    Dexbrompheniramine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Dexbrompheniramine; Pseudoephedrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Dexchlorpheniramine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Dextromethorphan; Quinidine: (Moderate) Additive anticholinergic effects may be seen when dicyclomine is used concomitantly with other drugs that possess anticholinergic properties, such as quinidine. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur.
    Digoxin: (Moderate) Anticholinergics, because of their ability to cause tachycardia, can antagonize the beneficial actions of digoxin in atrial fibrillation/flutter. Routine therapeutic monitoring should be continued when an antimuscarinic agent is prescribed with digoxin until the effects of combined use are known.
    Dihydrocodeine; Guaifenesin; Pseudoephedrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when dihydrocodeine is used concomitantly with an anticholinergic drug. The concomitant use of dihydrocodeine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Dimenhydrinate: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Diphenhydramine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Diphenhydramine; Hydrocodone; Phenylephrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Diphenhydramine; Ibuprofen: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Diphenhydramine; Naproxen: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Diphenhydramine; Phenylephrine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Disopyramide: (Moderate) In addition to its electrophysiologic effects, disopyramide exhibits clinically significant anticholinergic properties. These can be additive with other anticholinergics. Clinicians should be aware that urinary retention, particularly in males, and aggravation of glaucoma are realistic possibilities of using disopyramide with other anticholinergic agents.
    Donepezil: (Moderate) The therapeutic benefits of donepezil, a cholinesterase inhibitor, may be diminished during chronic co-administration with antimuscarinics or medications with potent anticholinergic activity. When concurrent use is not avoidable, the patient should be monitored for cognitive decline and anticholinergic side effects. Clinicians should generally avoid multiple medications with anticholinergic activity in the patient with dementia. Some of the common selective antimuscarinic drugs for bladder problems, (such as oxybutynin, darifenacin, trospium, fesoterodine, tolerodine, or solifenacin), do not routinely cause problems with medications used for dementia, but may cause anticholinergic side effects in some patients. Atropine may be used to offset bradycardia in cholinesterase inhibitor overdose.
    Donepezil; Memantine: (Moderate) The adverse effects of anticholinergics, such as dry mouth, urinary hesitancy or blurred vision may be enhanced with use of memantine; dosage adjustments of the anticholinergic drug may be required when memantine is coadministered. In addition, preliminary evidence indicates that chronic anticholinergic use in patients with Alzheimer's Disease may possibly have an adverse effect on cognitive function. Therefore, the effectiveness of drugs used in the treatment of Alzheimer's such as memantine, may be adversely affected by chronic antimuscarinic therapy. (Moderate) The therapeutic benefits of donepezil, a cholinesterase inhibitor, may be diminished during chronic co-administration with antimuscarinics or medications with potent anticholinergic activity. When concurrent use is not avoidable, the patient should be monitored for cognitive decline and anticholinergic side effects. Clinicians should generally avoid multiple medications with anticholinergic activity in the patient with dementia. Some of the common selective antimuscarinic drugs for bladder problems, (such as oxybutynin, darifenacin, trospium, fesoterodine, tolerodine, or solifenacin), do not routinely cause problems with medications used for dementia, but may cause anticholinergic side effects in some patients. Atropine may be used to offset bradycardia in cholinesterase inhibitor overdose.
    Doxylamine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Doxylamine; Pyridoxine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Dronabinol: (Moderate) Use caution if coadministration of dronabinol with anticholinergics is necessary. Concurrent use of dronabinol, THC with anticholinergics may result in additive drowsiness, hypertension, tachycardia, and possibly cardiotoxicity.
    Edrophonium: (Major) The muscarinic actions of edrophonium chloride can antagonize the antimuscarinic actions of dicyclomine and vice-versa.
    Eluxadoline: (Major) Avoid use of eluxadoline with medications that may cause constipation, such as anticholinergics. Discontinue use of eluxadoline in patients who develop severe constipation lasting more than 4 days.
    Erythromycin: (Moderate) Anticholinergics can antagonize the stimulatory effects of erythromycin on the GI tract (when erythromycin is used therapeutically for improving GI motility). Avoid chronic administration of antimuscarinics along with prokinetic agents under most circumstances. In addition, erythromycin is a CYP3A4 inhibitor and can reduce the metabolism of drugs metabolized by CYP3A4, including some anticholinergics.
    Erythromycin; Sulfisoxazole: (Moderate) Anticholinergics can antagonize the stimulatory effects of erythromycin on the GI tract (when erythromycin is used therapeutically for improving GI motility). Avoid chronic administration of antimuscarinics along with prokinetic agents under most circumstances. In addition, erythromycin is a CYP3A4 inhibitor and can reduce the metabolism of drugs metabolized by CYP3A4, including some anticholinergics.
    Ethanol: (Moderate) Dicyclomine can cause drowsiness, so it should be used cautiously in patients receiving CNS depressants like alcohol.
    Ezogabine: (Moderate) Caution is advisable during concurrent use of ezogabine and medications that may affect voiding such as anticholinergic agents. Ezogabine has caused urinary retention requiring catheterization in some cases. The anticholinergic effects of antimuscariinic and anticholinergic medications on the urinary tract may be additive. Additive sedation or other CNS effects may also occur.
    Fentanyl: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when fentanyl is used concomitantly with an anticholinergic drug. The concomitant use of fentanyl and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Fluphenazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including fluphenazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
    Fluticasone; Umeclidinium; Vilanterol: (Moderate) There is the potential for umeclidinium to have additive anticholinergic effects when administered with other anticholinergics or antimuscarinics. Per the manufaturer, avoid concomitant administration of umeclidinium with other anticholinergic medications when possible.
    Galantamine: (Moderate) The therapeutic benefits of galantamine, a cholinesterase inhibitor, may be diminished during chronic co-administration with antimuscarinics or medications with potent anticholinergic activity. When concurrent use is not avoidable, the patient should be monitored for cognitive decline and anticholinergic side effects. Clinicians should generally avoid multiple medications with anticholinergic activity in the patient with dementia. Some of the common selective antimuscarinic drugs for bladder problems, (such as oxybutynin, darifenacin, trospium, fesoterodine, tolerodine, or solifenacin), do not routinely cause problems with medications used for dementia, but may cause anticholinergic side effects in some patients. Atropine may be used to offset bradycardia in cholinesterase inhibitor overdose.
    Glucagon: (Major) The concomitant use of intravenous glucagon and anticholinergics increases the risk of gastrointestinal adverse reactions due to additive effects on inhibition of gastrointestinal motility. Concomitant use is not recommended.
    Glycopyrronium: (Moderate) Although glycopyrronium is minimally absorbed into the systemic circulation after topical application, there is the potential for glycopyrronium to have additive anticholinergic effects when administered with other antimuscarinics. Per the manufaturer, avoid concomitant administration of glycopyrronium with other anticholinergic medications.
    Guaifenesin; Hydrocodone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Homatropine; Hydrocodone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Hydrocodone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Hydrocodone; Ibuprofen: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Hydrocodone; Phenylephrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Hydrocodone; Potassium Guaiacolsulfonate: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Hydrocodone; Potassium Guaiacolsulfonate; Pseudoephedrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Hydrocodone; Pseudoephedrine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Hydromorphone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydromorphone is used concomitantly with an anticholinergic drug. The concomitant use of hydromorphone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Hydroxyzine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Ibuprofen; Oxycodone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when oxycodone is used concomitantly with an anticholinergic drug. The concomitant use of oxycodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Ipratropium: (Moderate) Although ipratropium is minimally absorbed into the systemic circulation after inhalation, there is the potential for additive anticholinergic effects when administered with other antimuscarinic or anticholinergic medications. Per the manufacturer, avoid coadministration.
    Ipratropium; Albuterol: (Moderate) Although ipratropium is minimally absorbed into the systemic circulation after inhalation, there is the potential for additive anticholinergic effects when administered with other antimuscarinic or anticholinergic medications. Per the manufacturer, avoid coadministration.
    Itraconazole: (Moderate) Antimuscarinics can raise intragastric pH. This effect may decrease the oral bioavailability of itraconazole; antimuscarinics should be used cautiously in patients receiving itraconazole.
    Levocetirizine: (Moderate) Concurrent use of cetirizine/levocetirizine with anticholinergics should generally be avoided. Coadministration may increase the risk of anticholinergic and CNS depressant-related side effects. If concurrent use is necessary, monitor for excessive anticholinergic effects, sedation, and somnolence.
    Levodopa: (Minor) Anticholinergics can potentiate the dopaminergic effects of levodopa. While some patients may benefit from this interaction, clinicians should be ready to decrease doses of levodopa if an antimuscarinic is added.
    Levorphanol: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when levorphanol is used concomitantly with an anticholinergic drug. The concomitant use of levorphanol and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Linaclotide: (Moderate) Anticholinergics can promote constipation and pharmacodynamically oppose the action of drugs used for the treatment of constipation or constipation-associated irritable bowel syndrome, such as linaclotide.
    Loperamide: (Moderate) Both antidiarrheals and anticholinergics, such as dicyclomine, decrease GI motility. Use of these drugs together may produce additive effects on the GI track; thereby increasing the risk for toxic megacolon.
    Loperamide; Simethicone: (Moderate) Both antidiarrheals and anticholinergics, such as dicyclomine, decrease GI motility. Use of these drugs together may produce additive effects on the GI track; thereby increasing the risk for toxic megacolon.
    Loxapine: (Moderate) Loxapine has anticholinergic activity. The concomitant use of loxapine and other anticholinergic drugs can increase the risk of anticholinergic adverse reactions including exacerbation of glaucoma, constipation, and urinary retention. Depending on the agent used, additive drowsiness/dizziness may also occur.
    Lubiprostone: (Moderate) Antimuscarinic drugs can promote constipation and pharmacodynamically oppose the action of drugs used for the treatment of constipation, such as lubiprostone. The clinical significance of these potential interactions is uncertain.
    Lurasidone: (Moderate) Antipsychotic agents may disrupt core temperature regulation; therefore, caution is recommended during concurrent use of lurasidone and medications with anticholinergic activity such as antimuscarinics. Concurrent use of lurasidone and medications with anticholinergic activity may contribute to heat-related disorders. Monitor patients for heat intolerance, decreased sweating, or increased body temperature if lurasidone is used with antimuscarinics.
    Macimorelin: (Major) Avoid use of macimorelin with drugs that may blunt the growth hormone response to macimorelin, such as antimuscarinic anticholinergic agents. Healthcare providers are advised to discontinue anticholinergics at least 1 week before administering macimorelin. Use of these medications together may impact the accuracy of the macimorelin growth hormone test.
    Magnesium Hydroxide: (Moderate) Antacids may inhibit the oral absorption of anticholinergics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
    Maprotiline: (Moderate) Additive anticholinergic effects may be seen when dicyclomine is used concomitantly with other drugs that possess anticholinergic properties, such as maprotiline. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur.
    Meclizine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Memantine: (Moderate) The adverse effects of anticholinergics, such as dry mouth, urinary hesitancy or blurred vision may be enhanced with use of memantine; dosage adjustments of the anticholinergic drug may be required when memantine is coadministered. In addition, preliminary evidence indicates that chronic anticholinergic use in patients with Alzheimer's Disease may possibly have an adverse effect on cognitive function. Therefore, the effectiveness of drugs used in the treatment of Alzheimer's such as memantine, may be adversely affected by chronic antimuscarinic therapy.
    Meperidine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when meperidine is used concomitantly with an anticholinergic drug. The concomitant use of meperidine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Meperidine; Promethazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including promethazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when meperidine is used concomitantly with an anticholinergic drug. The concomitant use of meperidine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Mephobarbital: (Moderate) Dicyclomine can cause drowsiness, so it should be used cautiously in patients receiving CNS depressants like barbiturates.
    Methadone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when methadone is used concomitantly with an anticholinergic drug. The concomitant use of methadone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Metoclopramide: (Moderate) Drugs with significant antimuscarinic activity, such as anticholinergics and antimuscarinics, may slow GI motility and thus may reduce the prokinetic actions of metoclopramide. Monitor patients for an increase in gastrointestinal complaints, such as reflux or constipation. Additive drowsiness may occur as well. The clinical significance is uncertain.
    Mirtazapine: (Moderate) Mirtazapine exhibits weak anticholinergic activity that is not expected to be clinically significant. However, the anticholinergic effects may be additive to the antimuscarinics. Clinicians should note that additive antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation.
    Molindone: (Moderate) Antipsychotics are associated with anticholinergic effects; therefore, additive effects may be seen during concurrent use of molindone and other drugs having anticholinergic activity such as antimuscarinics. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other CNS effects may also occur.
    Morphine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when morphine is used concomitantly with an anticholinergic drug. The concomitant use of morphine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Morphine; Naltrexone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when morphine is used concomitantly with an anticholinergic drug. The concomitant use of morphine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Nabilone: (Moderate) Concurrent use of nabilone with anticholinergics may result in pronounced tachycardia and drowsiness.
    Nalbuphine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when nalbuphine is used concomitantly with an anticholinergic drug. The concomitant use of nalbuphine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Neostigmine: (Major) The muscarinic actions of neostigmine can antagonize the antimuscarinic actions of dicyclomine and vice-versa.
    Nitrofurantoin: (Moderate) Antimuscarinics can delay gastric emptying, possibly increasing the bioavailability of nitrofurantoin.
    Olanzapine: (Moderate) Additive anticholinergic effects may be seen when olanzapine and anticholinergics are used concomitantly; use with caution. Use of olanzapine and other drugs with anticholinergic activity can increase the risk for severe gastrointestinal adverse reactions related to hypomotility. Olanzapine exhibits anticholinergic activity. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the anticholinergic agent used.
    Olanzapine; Fluoxetine: (Moderate) Additive anticholinergic effects may be seen when olanzapine and anticholinergics are used concomitantly; use with caution. Use of olanzapine and other drugs with anticholinergic activity can increase the risk for severe gastrointestinal adverse reactions related to hypomotility. Olanzapine exhibits anticholinergic activity. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the anticholinergic agent used.
    Olanzapine; Samidorphan: (Moderate) Additive anticholinergic effects may be seen when olanzapine and anticholinergics are used concomitantly; use with caution. Use of olanzapine and other drugs with anticholinergic activity can increase the risk for severe gastrointestinal adverse reactions related to hypomotility. Olanzapine exhibits anticholinergic activity. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the anticholinergic agent used.
    Oliceridine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when oliceridine is used with dicyclomine. Use of anticholinergics may increase the risk of urinary retention and/or severe constipation, which may lead to paralytic ileus.
    Omeprazole; Sodium Bicarbonate: (Moderate) Antacids may inhibit the oral absorption of antimuscarinics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
    Orphenadrine: (Moderate) Additive anticholinergic effects may be seen when dicyclomine is used concomitantly with other drugs that possess anticholinergic properties, such as orphenadrine. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur.
    Oxycodone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when oxycodone is used concomitantly with an anticholinergic drug. The concomitant use of oxycodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Oxymorphone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when oxymorphone is used concomitantly with an anticholinergic drug. The concomitant use of oxymorphone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Paroxetine: (Moderate) Of the selective serotonin reuptake inhibiting antidepressants (SSRIs), paroxetine is considered the most anticholinergic. Additive anticholinergic effects may be seen when paroxetine is used concomitantly with anticholinergic agents. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the specific anticholinergic used.
    Pentazocine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when pentazocine is used concomitantly with an anticholinergic drug. The concomitant use of pentazocine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Pentazocine; Naloxone: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when pentazocine is used concomitantly with an anticholinergic drug. The concomitant use of pentazocine and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Pentobarbital: (Moderate) Dicyclomine can cause drowsiness, so it should be used cautiously in patients receiving CNS depressants like barbiturates.
    Perphenazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including perphenazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
    Perphenazine; Amitriptyline: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including perphenazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
    Phenobarbital: (Moderate) Dicyclomine can cause drowsiness, so it should be used cautiously in patients receiving CNS depressants like phenobarbital.
    Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Moderate) Dicyclomine can cause drowsiness, so it should be used cautiously in patients receiving CNS depressants like phenobarbital.
    Phentermine; Topiramate: (Moderate) Use caution if carbonic anhydrase inhibitors are administered with anticholinergics and monitor for excessive anticholinergic adverse effects. The use of topiramate with agents that may increase the risk for heat-related disorders, such as anticholinergics, may lead to oligohidrosis, hyperthermia and/or heat stroke.
    Physostigmine: (Major) The muscarinic actions of physostigmine can antagonize the antimuscarinic actions of dicyclomine and vice-versa.
    Potassium: (Major) Drugs that decrease GI motility may increase the risk of GI irritation from sustained-release solid oral dosage forms of potassium salts. The use of solid oral dosage forms of potassium chloride is contraindicated in patients taking glycopyrrolate oral solution. In one study, healthy subjects were examined for GI irritation following the administration of oral potassium for at least 7 days. Glycopyrrolate was coadministered to some subjects in order to study the additional effects of delayed gastric emptying. Results indicated that subjects administered wax-matrix tablets had the highest incidence of erosions (43%) and ulcers (11%). Evidence of GI irritation was less frequent among subjects receiving liquid (0%) and microencapsulated (10.5% erosions, 1.2% ulcers) formulations. Therefore, if oral potassium supplementation is necessary in a patient taking antimuscarinics, a liquid formulation should be considered. If a solid formulation is being prescribed, the patient should be counseled on strategies that can be used to avoid GI irritation such as taking potassium products only while seated or standing, remaining upright for 10 minutes after each dose, and ingesting each dose with plenty of fluids.
    Pramlintide: (Major) Pramlintide therapy should not be considered in patients taking medications that alter gastric motility, such as anticholinergics. Pramlintide slows gastric emptying and the rate of nutrient delivery to the small intestine. Medications that have depressive effects on GI could potentiate the actions of pramlintide.
    Procainamide: (Moderate) The anticholinergic effects of procainamide may be significant and may be enhanced when combined with anticholinergics. Anticholinergic agents administered concurrently with procainamide may produce additive antivagal effects on AV nodal conduction, although this is not as well documented for procainamide as for quinidine.
    Prochlorperazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including prochlorperazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
    Promethazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including promethazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
    Promethazine; Dextromethorphan: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including promethazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
    Promethazine; Phenylephrine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including promethazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
    Proton pump inhibitors: (Moderate) The American College of Gastroenterology states that the effectiveness of proton pump inhibitors (PPIs) may be theoretically decreased if given with other antisecretory agents (e.g., anticholinergics). Proton pump inhibitors (PPIs) inhibit only actively secreting H+-pumps.
    Pseudoephedrine; Triprolidine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Pyridostigmine: (Major) The muscarinic actions of pyridoostigmine can antagonize the antimuscarinic actions of dicyclomine and vice-versa.
    Pyrilamine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Quetiapine: (Moderate) When administering systemic anticholinergics and quetiapine together, monitor for additive anticholinergic effects such as constipation, blurred vision, urinary retention, xerostomia, and tachycardia. Constipation is a commonly reported adverse effect of quetiapine and anticholinergic agents. Constipation in some cases may lead to ileus. Intestinal obstruction has been reported with quetiapine, including fatal cases in patients who were receiving multiple concomitant medications that decrease intestinal motility. Anticholinergic effects observed during therapeutic use of quetiapine are thought to be associated with norquetiapine, the active metabolite of quetiapine which has demonstrated a moderate to strong in vitro affinity for several muscarinic receptor subtypes.
    Quinidine: (Moderate) Additive anticholinergic effects may be seen when dicyclomine is used concomitantly with other drugs that possess anticholinergic properties, such as quinidine. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur.
    Rasagiline: (Moderate) MAOIs exhibit secondary anticholinergic actions. Additive anticholinergic effects may be seen when MAOIs are used concomitantly with antimuscarinics. Clinicians should note that antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive CNS effects are also possible when many of these drugs are combined with MAOIs.
    Remifentanil: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when remifentanil is used concomitantly with an anticholinergic drug. The concomitant use of remifentanil and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Revefenacin: (Moderate) Although revefenacin is minimally absorbed into the systemic circulation after inhalation, there is the potential for additive anticholinergic effects when administered with other antimuscarinics. Avoid concomitant administration with other anticholinergic and antimucarinic medications.
    Rivastigmine: (Moderate) The therapeutic benefits of rivastigmine, a cholinesterase inhibitor, may be diminished during chronic co-administration with antimuscarinics or medications with potent anticholinergic activity. When concurrent use is not avoidable, the patient should be monitored for cognitive decline and anticholinergic side effects. Clinicians should generally avoid multiple medications with anticholinergic activity in the patient with dementia. Some of the common selective antimuscarinic drugs for bladder problems, (such as oxybutynin, darifenacin, trospium, fesoterodine, tolerodine, or solifenacin), do not routinely cause problems with medications used for dementia, but may cause anticholinergic side effects in some patients. Atropine may be used to offset bradycardia in cholinesterase inhibitor overdose.
    Secobarbital: (Moderate) Dicyclomine can cause drowsiness, so it should be used cautiously in patients receiving CNS depressants like barbiturates.
    Secretin: (Major) Discontinue anticholinergic medications at least 5 half-lives before administering secretin. Patients who are receiving anticholinergics at the time of stimulation testing may be hyporesponsive to secretin stimulation and produce a false result. Consider additional testing and clinical assessments for aid in diagnosis.
    Sedating H1-blockers: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Sincalide: (Moderate) Sincalide-induced gallbladder ejection fraction may be affected by anticholinergics. False study results are possible in patients with drug-induced hyper- or hypo-responsiveness; thorough patient history is important in the interpretation of procedure results.
    Sodium Bicarbonate: (Moderate) Antacids may inhibit the oral absorption of antimuscarinics. Simultaneous oral administration should be avoided when feasible; separate dosing by at least 2 hours to limit an interaction.
    Solifenacin: (Moderate) Additive anticholinergic effects may be seen when drugs with antimuscarinic properties like solifenacin are used concomitantly with other antimuscarinics. Blurred vision and dry mouth would be common effects. Clinicians should note that additive antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur.
    Sufentanil: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when sufentanil is used concomitantly with an anticholinergic drug. The concomitant use of sufentanil and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Tacrine: (Moderate) The therapeutic benefits of tacrine, a cholinesterase inhibitor, may be diminished during chronic co-administration with antimuscarinics or medications with potent anticholinergic activity. When concurrent use is not avoidable, the patient should be monitored for cognitive decline and anticholinergic side effects. Clinicians should generally avoid multiple medications with anticholinergic activity in the patient with dementia. Some of the common selective antimuscarinic drugs for bladder problems, (such as oxybutynin, darifenacin, trospium, fesoterodine, tolerodine, or solifenacin), do not routinely cause problems with medications used for dementia, but may cause anticholinergic side effects in some patients. Atropine may be used to offset bradycardia in cholinesterase inhibitor overdose.
    Tapentadol: (Moderate) Tapentadol should be used cautiously with anticholinergic medications since additive depressive effects on GI motility or bladder function may occur. Monitor patients for signs of urinary retention or reduced gastric motility. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. Opiate analgesics combined with antimuscarinics can cause severe constipation or paralytic ileus, especially with chronic use. Additive CNS effects like drowsiness or dizziness may also occur.
    Tegaserod: (Major) Drugs that exert significant anticholinergic properties such as antimuscarinics may pharmacodynamically oppose the effects of prokinetic agents such as tegaserod. Avoid administering antimuscarinics along with tegaserod under most circumstances. Inhaled respiratory antimuscarinics, such as ipratropium, are unlikely to interact with tegaserod. Ophthalmic anticholinergics may interact if sufficient systemic absorption of the eye medication occurs.
    Thiazide diuretics: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
    Thioridazine: (Moderate) Additive anticholinergic effects may be seen when drugs with anticholinergic properties like thioridazine are used concomitantly with anticholinergic agents. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur, depending on the interacting agent.
    Thiothixene: (Moderate) Anticholinergics may have additive effects with thiothixene, an antipsychotic with the potential for anticholinergic activity. Monitor for anticholinergic-related adverse effects such as xerostomia, blurred vision, constipation, and urinary retention during concurrent use.
    Tiotropium: (Moderate) Although tiotropium is minimally absorbed into the systemic circulation after inhalation, tiotropium may have additive anticholinergic effects when administered with other antimuscarinics. Per the manufacturer, avoid concomitant administration of tiotropium with other anticholinergic medications when possible.
    Tiotropium; Olodaterol: (Moderate) Although tiotropium is minimally absorbed into the systemic circulation after inhalation, tiotropium may have additive anticholinergic effects when administered with other antimuscarinics. Per the manufacturer, avoid concomitant administration of tiotropium with other anticholinergic medications when possible.
    Tolterodine: (Moderate) Additive anticholinergic effects may be seen when tolterodine is used concomitantly with other antimuscarinics. When possible, avoid concurrent use, especially in the elderly, who are more susceptible to the anticholinergic effects. Consider alternatives to these other medications, if available. Clinicians should note that antimuscarinic effects might be seen not only on bladder smooth muscle, but also on GI function, the eye, and temperature regulation. Blurred vision, constipation, and dry mouth may be more prominent additive effects. With many of the listed agents, additive drowsiness may also occur when combined.
    Topiramate: (Moderate) Use caution if carbonic anhydrase inhibitors are administered with anticholinergics and monitor for excessive anticholinergic adverse effects. The use of topiramate with agents that may increase the risk for heat-related disorders, such as anticholinergics, may lead to oligohidrosis, hyperthermia and/or heat stroke.
    Tramadol: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when tramadol is used concomitantly with an anticholinergic drug. The concomitant use of tramadol and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Tramadol; Acetaminophen: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when tramadol is used concomitantly with an anticholinergic drug. The concomitant use of tramadol and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Tricyclic antidepressants: (Moderate) Depending on the specific agent, additive anticholinergic effects may be seen when tricyclic antidepressants (TCAs) are used concomitantly with other anticholinergics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive CNS effects are also possible when many of these drugs are combined with tricyclic antidepressants.
    Trifluoperazine: (Moderate) Additive anticholinergic effects may be seen when anticholinergics are used concomitantly with phenothiazines, including trifluoperazine. Clinicians should note that antimuscarinic effects may be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness or other additive CNS effects may also occur.
    Trimethobenzamide: (Moderate) Trimethobenzamide has CNS depressant effects and may cause drowsiness. The concurrent use of trimethobenzamide with other medications that cause CNS depression, like the anticholinergics, may potentiate the effects of either trimethobenzamide or the anticholinergic.
    Triprolidine: (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Trospium: (Moderate) Additive anticholinergic effects may be seen when trospium is used concomitantly with other antimuscarinics. When possible, avoid concurrent use, especially in the elderly, who are more susceptible to the anticholinergic effects. Consider alternatives to these other medications, if available. Clinicians should note that antimuscarinic effects might be seen not only on bladder smooth muscle, but also on GI function, the eye, and temperature regulation. Blurred vision, constipation, and dry mouth may be more prominent additive effects. With many of the listed agents, additive drowsiness may also occur when combined with trospium.
    Umeclidinium: (Moderate) There is the potential for umeclidinium to have additive anticholinergic effects when administered with other anticholinergics or antimuscarinics. Per the manufaturer, avoid concomitant administration of umeclidinium with other anticholinergic medications when possible.
    Umeclidinium; Vilanterol: (Moderate) There is the potential for umeclidinium to have additive anticholinergic effects when administered with other anticholinergics or antimuscarinics. Per the manufaturer, avoid concomitant administration of umeclidinium with other anticholinergic medications when possible.
    Vibegron: (Moderate) Vibegron should be administered with caution in patients taking anticholinergics because of potential for an increased risk of urinary retention. Monitor for symptoms of urinary difficulties or urinary retention. Patients may note constipation or dry mouth with use of these drugs together.
    Zonisamide: (Moderate) Zonisamide use is associated with case reports of decreased sweating, hyperthermia, heat intolerance, or heat stroke and should be used with caution in combination with other drugs that may also predispose patients to heat-related disorders like anticholinergics.

    PREGNANCY AND LACTATION

    Pregnancy

    No adequate and well controlled studies have been conducted with dicyclomine in pregnant women at recommended doses of 80 to 160 mg/day. Although there are no clinical trials documenting its effect in pregnant women, epidemiologic studies did not show an increased risk of structural malformations in babies born to women who took dicyclomine at doses up to 40 mg/day during the first trimester. Additionally, reproduction studies have been performed in rats and rabbits at doses up to 33 times the maximum recommended human dose based on 160 mg/day (3 mg/kg) and have revealed no evidence of harm to the fetus due to dicyclomine. Dicyclomine was used historically as part of a 3-drug regimen (dicyclomine; doxylamine; pyridoxine) to treat nausea and vomiting during pregnancy, but the products (e.g., Bendectin, Debendox) were withdrawn from the market due to litigation. However, expert analysis of these cases concluded that the drug combination in the products was not associated with an increased risk of congenital limb defects.

    Dicyclomine is excreted into human milk. Dicyclomine is contraindicated during breast-feeding. The use of dicyclomine in breast-feeding mothers is not recommended, due to potential serious adverse events that may occur from infant ingestion of the drug. Respiratory distress has been reported in infants aged less than 6 months who ingested dicyclomine directly (not via breast milk). In addition, anticholinergics such as dicyclomine may inhibit lactation.

    MECHANISM OF ACTION

    Dicyclomine is an antimuscarinic, anticholinergic agent. The underlying mechanism of activity is unknown, but it is believed to exert a nonspecific, local, direct spasmolytic (musculotropic) action on the smooth muscle of the GI tract, thereby decreasing muscular tone and motility. Dicyclomine also can relieve GI smooth muscle spasm via effects exerted at the acetylcholine muscarinic receptor. Dicyclomine has 1/8 the milligram potency of atropine.
     
    Antimuscarinic agents usually will readily inhibit the increases in GI tract tone and motility resulting from emotional trauma, insulin-induced hypoglycemia, or the administration of parasympathomimetic agents. Other causes of increased GI tone and motility, including those secondary to histamine or vasopressin, may not respond to antimuscarinic agents.

    PHARMACOKINETICS

    Dicyclomine is administered orally and intramuscularly. The volume of distribution is 3.65 L/kg. The specific mechanisms of elimination have not been determined. Approximately 80% of an oral dose is excreted in the urine and about 9% in the feces. The elimination half-life is roughly 9—10 hours.

    Oral Route

    Dicyclomine is absorbed rapidly from the GI tract and reaches peak plasma concentrations within 1—1.5 hours following oral administration.

    Intramuscular Route

    Intramuscular dicyclomine is nearly twice as bioavailable as oral dicyclomine.