PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    Diuretic, Calcium Channel Blocker, and Angiotensin-II Receptor Blocker/ARBs Combinations

    DEA CLASS

    Rx

    DESCRIPTION

    Combination product containing a dihydropyridine calcium-channel blocker (amlodipine), an angiotensin II receptor blocker (ARB, valsartan) and a thiazide diuretic (hydrochlorothiazide, HCTZ)
    Used for the maintenance treatment of HTN in adults after titration of individual drugs

    COMMON BRAND NAMES

    Exforge HCT

    HOW SUPPLIED

    Amlodipine Besylate, Valsartan, Hydrochlorothiazide/Amlodipine, Valsartan, Hydrochlorothiazide/Exforge HCT Oral Tab: 10-160-12.5mg, 10-160-25mg, 10-320-25mg, 5-160-12.5mg, 5-160-25mg

    DOSAGE & INDICATIONS

    For the treatment of hypertension.
    NOTE: Amlodipine; hydrochlorothiazide; HCTZ; valsartan is not indicated for the initial therapy of hypertension.
    For add-on or switch therapy in patients not adequately controlled on any two of the following antihypertensive classes: calcium channel blockers, angiotensin receptor blockers, or diuretics.
    Oral dosage
    Adults

    1 tablet PO once daily. Individualize the dosage by titration of amlodipine, hydrochlorothiazide, and valsartan. The dosage of one or all components may be increased after 2 weeks of therapy. The maximum recommended daily dosage is 10 mg amlodipine, 25 mg hydrochlorothiazide, and 320 mg valsartan. Correct volume and/or sodium depletion prior to administration.

    Geriatric

    See adult dosage. Greater sensitivity in some older patients may occur. Elderly individuals have a 35% longer half-life of valsartan compared to the young. Adjust dosage based on clinical response.

    For patients already receiving amlodipine, hydrochlorothiazide and valsartan who desire to switch to the combination tablet.
    Oral dosage
    Adults

    1 tablet PO once daily. Individualize the dosage by titration of amlodipine, hydrochlorothiazide, and valsartan. The combination product (Exforge HCT) may be substituted for the titrated components. The dosage of one or all drug components may be increased after 2 weeks depending on the clinical response. The maximum daily dosage is 10 mg amlodipine, 25 mg hydrochlorothiazide, and 320 mg valsartan. Correct volume and/or sodium depletion prior to administration.

    Geriatric

    See adult dosage. Greater sensitivity in some older patients may occur. Elderly individuals have a 35% longer half-life of valsartan compared to the young. Adjust dosage based on clinical response.

    MAXIMUM DOSAGE

    Adults

    10 mg/day PO amlodipine, 25 mg/day hydrochlorothiazide, HCTZ, and 320 mg/day PO valsartan.

    Elderly

    10 mg/day PO amlodipine, 25 mg/day hydrochlorothiazide, HCTZ, and 320 mg/day PO valsartan.

    Adolescents

    Safety and efficacy have not been established.

    Children

    Safety and efficacy have not been established.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    Use with caution in patients with mild to moderate hepatic disease. The recommended starting dose of amlodipine in patients with hepatic impairment is 2.5 mg/day PO. No specific dosage adjustment of hydrochlorothiazide, HCTZ is needed; however, minor alterations of fluid and electrolyte balance may precipitate hepatic coma and caution is warranted. Additionally, valsartan AUC is approximately twice that of patients with normal liver function; no dosage adjustments for valsartan have been recommended, but dosage increases should be done cautiously. Use of the combination product in patients with severe hepatic impairment has not been studied and should be avoided.

    Renal Impairment

    CrCl >= 30 mL/min: No dosage adjustment is necessary.
    CrCl < 30 mL/min: The safety and efficacy of amlodipine; hydrochlorothiazide, HCTZ; valsartan have not been established in patients with severe renal impairment. In general, loop diuretics are preferred to thiazides in this population as thiazides are not effective in severe renal impairment.
     
    Intermittent hemodialysis
    Amlodipine and valsartan are not removed by hemodialysis. Combination therapy with hydrochlorothiazide is not recommended in patients with CrCl < 30 mL/min. Thiazide diuretics are generally not effective in this setting.

    ADMINISTRATION

    Oral Administration

    • May be administered without regard to meals.

    STORAGE

    Exforge HCT:
    - Protect from moisture
    - Store at controlled room temperature (between 68 and 77 degrees F)

    CONTRAINDICATIONS / PRECAUTIONS

    General Information

    NOTE: This monograph discusses the use of the combination product amlodipine; hydrochlorothiazide, HCTZ; valsartan. Clinicians may wish to consult the individual drug monographs for more information.
     
    Thiazide diuretics such as hydrochlorothiazide have been associated with a slight increase in serum cholesterol and triglyceride concentrations. Data from long-term studies, however, suggest diuretic-induced cholesterol changes are not clinically significant and do not contribute to coronary heart disease risk.

    Dihydropyridine hypersensitivity

    Amlodipine is structurally related to nifedipine (1,4 dihydropyridine) and is contraindicated in patients with known serious dihydropyridine hypersensitivity.

    Asthma, penicillin hypersensitivity, sulfonamide hypersensitivity, thiazide diuretic hypersensitivity

    Thiazide diuretics are contraindicated in patients with known thiazide diuretic hypersensitivity. According to the manufacturer, hydrochlorothiazide is specifically contraindicated in patients with sulfonamide hypersensitivity. Hypersensitivity reactions may occur in patients with or without a history of allergy or bronchial asthma; however, reactions are more likely to occur in patients with such history. Although thiazide diuretics are sulfonamide derivatives, sulfonamide cross-sensitivity has been rarely documented. Until further data are available, thiazide diuretics should be used with caution in patients with sulfonamide hypersensitivity. Thiazide diuretics do not contain the N4-aromatic amine or the N1-substituent which are present in sulfonamide antibiotics. Non-arylamine sulfonamide derivatives, such as thiazide diuretics, have been proposed to have a lower risk of allergic reactions in patients with sulfonamide allergy, presumably due to lack of an arylamine group at the N4 position (a proposed structural site of action for sulfonamide allergy). One large retrospective cohort study has reported that in patients with the presence of an allergic reaction after exposure to a sulfonamide antibiotic, 9.9% had an allergic reaction after receiving a non-antibiotic sulfonamide derivative, while in patients who lacked an allergic reaction after sulfonamide antibiotic exposure, 1.6% had an allergic reaction after administration of a non-antibiotic sulfonamide derivative (adjusted odds ratio 2.8; 95% CI, 2.1—3.7). A causal relationship between sulfonamide hypersensitivity and allergic reactions with non-arylamine sulfonamide derivatives has not been definitively established and remains controversial. In general, patients with a documented sulfonamide allergy are considered to be predisposed for development of allergic drug reactions. Also, patients with a history of sulfonamide hypersensitivity or penicillin hypersensitivity who receive hydrochlorothiazide may also be at increased risk for the development of an idiosyncratic reaction resulting in transient myopia and acute angle-closure glaucoma. Discontinue hydrochlorothiazide promptly if this reaction occurs.

    Angina, coronary artery disease

    Rarely, an increase in the frequency, duration, and/or severity of angina or myocardial infarction have occurred during calcium channel blocker (such as amlodipine) initiation or dosage increase, particularly in those patients with severe obstructive coronary artery disease.

    Acute myocardial infarction, aortic stenosis, bradycardia, cardiogenic shock, cardiomyopathy, heart failure, hypotension, hypovolemia, mitral stenosis, surgery, ventricular dysfunction

    Amlodipine; hydrochlorothiazide, HCTZ; valsartan caused excessive hypotension in 1.7% of patients treated with the maximum dose of Exforge HCT (amlodipine 10 mg, valsartan 320 mg and HCTZ 25 mg) in a controlled trial of patients with uncomplicated hypertension. Angiotensin receptor blockers may cause symptomatic hypotension in patients with an activated renin-angiotensin system such as patients with hypovolemia and/or salt-depletion receiving high doses of diuretics. Intravascular volume depletion increases the risk of symptomatic hypotension. These conditions should be corrected prior to starting therapy, or therapy should be started under close medical supervision.  In patients whose renal function is critically dependent on the activity of the renin-angiotensin-aldosterone system (RAS) (e.g., patients with hypovolemia, heart failure), use of amlodipine; hydrochlorothiazide, HCTZ; valsartan may increase the risk of acute renal failure. Amlodipine; hydrochlorothiazide, HCTZ; valsartan should be used with caution in patients undergoing surgery or dialysis. Heart failure or post acute myocardial infarction patients given valsartan commonly have some reduction in blood pressure. To minimize hypotensive effects in patients with heart failure or left ventricular dysfunction post-myocardial infarction, initial doses are lower than those used in the treatment of hypertension. Discontinuation of therapy because of continuing symptomatic hypotension is usually not needed when dosing instructions are followed. Since the vasodilation induced by amlodipine occurs gradually, acute hypotension has rarely been reported after oral administration. Amlodipine; hydrochlorothiazide, HCTZ; valsartan should not be initiated in patients with aortic stenosis, mitral stenosis, or obstructive hypertrophic cardiomyopathy. Additionally, amlodipine should be used with caution in patients with severe bradycardia or heart failure (particularly in combination with a beta-blocker) because of the risk of a slight negative inotropic effect and potent hypotensive effects. Amlodipine should be avoided in cardiogenic shock or decompensated NYHA Class IV heart failure. Although clinical studies (PRAISE-1, PRAISE-2) have shown that amlodipine did not worsen heart failure in patients with NYHA Class II or III heart failure, amlodipine should be used cautiously in patients with heart failure. Blood pressure should be monitored carefully in all patients receiving amlodipine; hydrochlorothiazide, HCTZ; valsartan. If excessive hypotension develops, place patient in a supine position and, if needed, give an IV infusion of normal saline. Transient hypotension is not a contraindication to further treatment; therapy can usually be continued once blood pressure has stabilized. If a beta-blocker is being discontinued, it should be noted that amlodipine does not give protection against the dangers of abrupt beta-blocker withdrawal; therefore, beta-blocker withdrawal should be done gradually.

    Anuria, renal artery stenosis, renal impairment

    The safety and efficacy of amlodipine; hydrochlorothiazide, HCTZ; valsartan have not been established in patients with severe renal impairment (CrCl <= 30 mL/min) or renal failure. Amlodipine; hydrochlorothiazide, HCTZ; valsartan is contraindicated in patients with anuria because thiazide diuretics are considered ineffective when the CrCl <= 30 mL/min. Changes in renal function including acute renal failure can be caused by drugs that inhibit the renin-angiotensin system and by diuretics. Patients whose renal function may depend in part on the activity of the renin-angiotensin system (e.g., patients with renal artery stenosis, chronic kidney disease, severe CHF, or volume depletion) may be at particular risk of developing acute renal failure on amlodipine; hydrochlorothiazide, HCTZ; valsartan. Renal function should be monitored in patients receiving amlodipine; hydrochlorothiazide, HCTZ; valsartan. Consider withholding or discontinuing amlodipine; hydrochlorothiazide, HCTZ; valsartan in patients who develop a clinically significant decrease in renal function.

    Hepatic disease

    Avoid the use of amlodipine; hydrochlorothiazide, HCTZ; valsartan in patients with severe hepatic disease. Patients with mild to moderate hepatic disease, including patients with biliary obstructive disorders, should be monitored for worsening of hepatic or renal function, including fluid status, electrolytes, and adverse reactions. The clearance of both amlodipine and valsartan is prolonged in patients with hepatic disease. Amlodipine elimination half-life is increased to 56 hours in patients with impaired hepatic function. Patients with mild to moderate hepatic impairment, including those with biliary obstruction, have significantly increased plasma valsartan concentrations (2-fold increase in AUC) compared to patients with normal hepatic function. Initial dosage adjustment of amlodipine is recommended, however, no specific initial dosage adjustment for valsartan has been recommended. HCTZ should be used with caution in patients with hepatic disease since minor alterations of fluid and electrolyte balance may precipitate hepatic coma. Care should be exercised when dosing valsartan in these patients and dosage increases should be made cautiously.

    Electrolyte imbalance, hypercalcemia, hyperkalemia, hypokalemia, hypomagnesemia, hyponatremia

    Amlodipine; hydrochlorothiazide, HCTZ; valsartan may reduce, elevate or leave potassium levels unchanged in individual patients. Although hyperkalemia is infrequent, angiotensin II blockade by valsartan can elevate serum potassium concentrations by blocking aldosterone secretion and could worsen pre-existing hyperkalemia. Patients should be instructed not to use potassium supplements or salt substitutes containing potassium without consulting the prescribing physician. In addition, patients with pre-existing significant hyponatremia, hyperkalemia, hypokalemia, hypomagnesemia, or hypercalcemia should have their electrolyte imbalances corrected before amlodipine; hydrochlorothiazide, HCTZ; valsartan is initiated. Thiazide diuretics such as hydrochlorothiazide have been shown to increase the urinary excretion of magnesium and decrease urinary calcium excretion. Thiazides may worsen dilutional hyponatremia, especially in elderly individuals. All patients should be monitored closely for clinical signs of fluid or electrolyte imbalance.

    Diabetes mellitus, hyperglycemia

    Hyperglycemia or impaired glucose tolerance can occur during hydrochlorothiazide therapy. In patients with diabetes mellitus who are receiving amlodipine; hydrochlorothiazide, HCTZ; valsartan, blood glucose levels should be monitored frequently. Adjustment of insulin and/or oral hypoglycemic agents may be required.

    Pancreatitis

    Thiazide diuretics have been reported to cause pancreatitis. Amlodipine; hydrochlorothiazide, HCTZ; valsartan should be used with caution in patients with a history of pancreatitis.

    Gout, hyperuricemia

    Amlodipine; hydrochlorothiazide, HCTZ; valsartan should be administered cautiously to patients with gout or hyperuricemia since thiazide diuretics such as hydrochlorothiazide have been reported to reduce the clearance of uric acid.

    Systemic lupus erythematosus (SLE)

    Hydrochlorothiazide has been reported to activate or exacerbate systemic lupus erythematosus (SLE).

    Sunlight (UV) exposure

    Photosensitivity has been reported with thiazide diuretics such as hydrochlorothiazide. Patients should avoid excessive sunlight (UV) exposure and therapy should be discontinued if phototoxicity occurs.

    ACE-inhibitor induced angioedema, angioedema

    Anaphylactic reactions (anaphylactoid reactions) and angioedema have been reported with angiotensin II receptor antagonists such as valsartan. Theoretically, angiotensin II receptor antagonists should be less likely than angiotensin converting enzyme inhibitors (ACEIs) to precipitate angioedema because angiotensin II receptor antagonists do not cause accumulation of kinins. However, angioedema (swelling of lips and eyelids, facial rash) has been rarely reported in patients receiving angiotensin II receptor antagonists, including in patients with a prior history of ACE-inhibitor induced angioedema. While angiotensin II receptor antagonists have been suggested as potential alternatives to ACE inhibitors for patients who experience angioedema due to a lower frequency of associated angioedema , the safety of angiotensin II receptor antagonists in patients with a prior history of ACE-inhibitor induced angioedema has not been definitively established. It is prudent to use substantial caution when prescribing angiotensin II receptor antagonists in patients with a history of ACE-inhibitor induced angioedema. Some authors have recommended that angiotensin II receptor antagonists should be avoided in patients with a history of angioedema, especially those with ACE-inhibitor induced angioedema.

    Black patients

    Although angiotensin II receptor antagonists such as valsartan are effective in reducing blood pressure in Black patients (a low renin population), there is generally a smaller antihypertensive response compared to other ethnic populations.

    Orthostatic hypotension, sympathectomy, syncope

    Orthostatic hypotension may occur during treatment with thiazide diuretics such as hydrochlorothiazide. Orthostatic hypotension can be exacerbated by concurrent use of alcohol, narcotics, or antihypertensive drugs. Excessive hypotension can result in syncope. An increased risk of falls has been reported for elderly patients receiving thiazide diuretics. In addition, the antihypertensive effects of thiazides may be enhanced in patients predisposed for orthostatic hypotension, including the post-sympathectomy patient.

    Pregnancy

    When pregnancy is detected, discontinue amlodipine; hydrochlorothiazide, HCTZ; valsartan as soon as possible. Women of child-bearing age should be made aware of the potential risk of fetal harm when amlodipine; hydrochlorothiazide; valsartan is taken during pregnancy. When used during the second and third trimesters of pregnancy, drugs that affect the renin-angiotensin system (e.g., ACE inhibitors, angiotensin II receptor antagonists) can cause reduced fetal renal function and increased fetal and neonatal morbidity and death. Use of drugs that affect the renin-angiotensin system during pregnancy can cause fetal death or injury such as hypotension, neonatal skull hypoplasia, reversible or irreversible renal failure and death. Anhydramnios and oligohydramnios have also been reported. Development of oligohydramnios may be associated with decreased fetal renal function leading to anuria and renal failure and results in fetal limb contractures, craniofacial deformation, hypotension, hypoplastic ling development, and death. Although retrospective data indicate that first-trimester use of ACE inhibitors has been associated with a potential risk of birth defects.[32294] However, a much larger observational study (n = 465,754) found that the risk of birth defects was similar in infants exposed to ACE inhibitors during the first trimester, in infants exposed to other antihypertensives during the first trimester, and in those whose mothers were hypertensive but were not treated.[46406] Infants born to mothers with hypertension, either treated or untreated, had a higher risk of birth defects than those born to mothers without hypertension. The authors concluded that the presence of hypertension likely contributed to the development of birth defects rather than the use of medications. An observational cohort study evaluating the outcomes of angiotensin receptor blockers (ARBs) use during the first trimester of pregnancy found an increased rate of major birth defects compared to non-hypertensive pregnancies, 5.4% and 3%, respectively; the difference did not reach statistical significance. The authors noted that there was a higher risk of major birth defects with ARB therapy beyond 6 weeks of gestation compared to discontinuation of ARBs before week 6, 7.3% and 2.8%, respectively. The rates of prematurity and reduced birth weight were also increased in the ARB group. There were no statistically significant differences in the rates of major birth defects, spontaneous abortions, or preterm births between women with chronic hypertension treated with an ARB versus methyldopa.[64367] Data with amlodipine use in pregnancy are insufficient to inform a drug-associated risk for major birth defects and miscarriage. Data from animal reproductive studies indicate no evidence of adverse developmental effects when pregnant rats and rabbits received oral amlodipine during organogenesis at doses approximately 10- and 20-times the maximum recommended human dose, respectively. Litter size for rats was decreased by about 50%, and the number of intrauterine deaths was increased by approximately 5-fold. Amlodipine has been shown to prolong the gestation period and duration of labor in rats at this dose.[29090] Thiazide diuretics can cross the placenta resulting in umbilical cord concentrations similar to maternal plasma concentrations and amniotic fluid concentrations that are up to 19 times greater than in the umbilical vein. Based on the results from one large study, first-trimester use of thiazide and related diuretics may increase the risk for congenital defects. In addition to malformations, other fetal risks associated with thiazide use during pregnancy include placental hypoperfusion, fetal or neonatal jaundice, hypoglycemia, thrombocytopenia, hyponatremia, hypokalemia, and death from maternal complications. Once pregnancy is detected, ultrasound examination should be performed if exposure occurs beyond the first trimester. In rare cases when another antihypertensive agent can not be used to treat a pregnant patient, serial ultrasound examinations should be performed to assess the intraamniotic environment. If oligohydramnios occurs, discontinue amlodipine; hydrochlorothiazide, HCTZ; valsartan unless it is life-saving to the mother. It should be noted that oligohydramnios may not appear until after the fetus has sustained an irreversible injury. Closely observe newborns with histories of in utero exposure to amlodipine; hydrochlorothiazide, HCTZ; valsartan for hypotension, oliguria, and hyperkalemia. If oliguria occurs, blood pressure and renal perfusion support may be required, as well as exchange transfusion or dialysis to reverse hypotension and/or support decreased renal function.[35588]

    Breast-feeding

    Breast-feeding is not recommended during amlodipine; hydrochlorothiazide, HCTZ; valsartan therapy. There are no data on the presence of valsartan in human milk, the effects on the breastfed infant, or the effects on milk production. In a study of thirty-one lactating women with pregnancy-induced hypertension, the median relative infant dose (RID) of amlodipine in human milk was 4.2% (interquartile range, 3.12% to 7.25%) and the maximum RID was 15.2%. No adverse effects of amlodipine on the breast-fed infant haven been observed. There is no information on the effect of amlodipine on milk production in breast-feeding women.[35588] Thiazides are excreted in human milk.[35588] [64369] In another study that enrolled eight lactating women, the average RID for amlodipine was 3.4% (range, 1.56% to 4.32%).[64368] Thiazide diuretics distribute into breast milk, and it has been recommended by some manufacturers that women do not nurse while receiving selected thiazide diuretics. High doses of some thiazide diuretics have been used off-label to suppress lactation, and thus should be used with caution during the establishment of breast-feeding. Some experts consider doses of 50 mg or less to be compatible with breast-feeding. The ACE inhibitors captopril, enalapril, benazepril, and quinapril are excreted in human breast milk in very small quantities; therefore, a clinically significant risk to a breast-feeding infant is not expected unless high doses are required.[27500] [29147] [46352] [46354] [63903] Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition. If a breast-feeding infant experiences an adverse effect related to a maternally ingested drug, healthcare providers are encouraged to report the adverse effect to the FDA.

    Geriatric

    No overall differences in safety or efficacy were observed in geriatric patients versus younger adults during clinical trials of amlodipine; hydrochlorothiazide; valsartan. The recommended initial dose of amlodipine in geriatric patients is 2.5 mg, a strength not available in the combination product. Geriatric patients are more likely to have hepatic impairment and experience delayed clearance of amlodipine, hydrochlorothiazide, or valsartan, which increases their risk of toxicity. Monitor renal function, fluid status, and electrolytes during treatment.[35588] An increased risk of falls due to thiazide-induced syncope has been reported for elderly patients receiving thiazide diuretics.[32527] [32528] According to the Beers Criteria, diuretics such as hydrochlorothiazide are considered potentially inappropriate medications (PIMs) in geriatric patients and should be used with caution due to the potential for causing or exacerbating SIADH or hyponatremia. Sodium levels should be closely monitored when starting or changing dosages of diuretics in older adults.[63923] The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities; antihypertensive regimens should be individualized to achieve the desired outcome while minimizing adverse effects. Antihypertensives may cause dizziness, postural hypotension, fatigue, and there is an increased risk for falls. Also, diuretics may cause fluid and electrolyte imbalances and may precipitate or exacerbate urinary incontinence.[60742]

    ADVERSE REACTIONS

    Severe

    pancreatitis / Delayed / 0-1.0
    angioedema / Rapid / 0-1.0
    vasculitis / Delayed / 0-1.0
    bradycardia / Rapid / 0-1.0
    rhabdomyolysis / Delayed / 0-1.0
    hyperkalemia / Delayed / 0.4-0.4
    Stevens-Johnson syndrome / Delayed / Incidence not known
    toxic epidermal necrolysis / Delayed / Incidence not known
    exfoliative dermatitis / Delayed / Incidence not known
    erythema multiforme / Delayed / Incidence not known
    agranulocytosis / Delayed / Incidence not known
    hemolytic anemia / Delayed / Incidence not known
    pancytopenia / Delayed / Incidence not known
    aplastic anemia / Delayed / Incidence not known
    teratogenesis / Delayed / Incidence not known
    azotemia / Delayed / Incidence not known
    ocular hypertension / Delayed / Incidence not known

    Moderate

    hypokalemia / Delayed / 10.0-10.0
    edema / Delayed / 6.5-6.5
    neutropenia / Delayed / 1.9-1.9
    constipation / Delayed / 0-1.0
    dehydration / Delayed / 0-1.0
    dysuria / Early / 0-1.0
    thrombocytopenia / Delayed / 0-1.0
    leukopenia / Delayed / 0-1.0
    dysphagia / Delayed / 0-1.0
    gingival hyperplasia / Delayed / 0-1.0
    angina / Early / 0-1.0
    peripheral neuropathy / Delayed / 0-1.0
    orthostatic hypotension / Delayed / 0.5-0.5
    hypotension / Rapid / 0.2
    hemorrhoids / Delayed / 0.2
    gastritis / Delayed / 0.2
    depression / Delayed / 0.2
    impotence (erectile dysfunction) / Delayed / 0.2
    sinus tachycardia / Rapid / 0.2
    dyspnea / Early / 0.2
    chest pain (unspecified) / Early / 0.2
    hyponatremia / Delayed / 0.2
    diabetes mellitus / Delayed / 0.2
    hyperlipidemia / Delayed / 0.2
    bullous rash / Early / Incidence not known
    nephrolithiasis / Delayed / Incidence not known
    hyperuricemia / Delayed / Incidence not known
    gout / Delayed / Incidence not known
    hepatitis / Delayed / Incidence not known
    cholestasis / Delayed / Incidence not known
    hyperbilirubinemia / Delayed / Incidence not known
    elevated hepatic enzymes / Delayed / Incidence not known
    jaundice / Delayed / Incidence not known
    hyperglycemia / Delayed / Incidence not known
    hypomagnesemia / Delayed / Incidence not known
    hypercalcemia / Delayed / Incidence not known
    hypertriglyceridemia / Delayed / Incidence not known
    hypercholesterolemia / Delayed / Incidence not known
    blurred vision / Delayed / Incidence not known
    myopia / Delayed / Incidence not known
    xanthopsia / Delayed / Incidence not known

    Mild

    gynecomastia / Delayed / 1.0-10.0
    dizziness / Early / 8.2-8.2
    headache / Early / 5.2-5.2
    dyspepsia / Early / 2.2-2.2
    fatigue / Early / 2.2-2.2
    back pain / Delayed / 2.1-2.1
    pharyngitis / Delayed / 2.1-2.1
    nausea / Early / 2.1-2.1
    anorexia / Delayed / 0-1.0
    appetite stimulation / Delayed / 0-1.0
    xerostomia / Early / 0.2
    abdominal pain / Early / 0.2
    diarrhea / Early / 0.2
    vomiting / Early / 0.2
    weakness / Early / 0.2
    musculoskeletal pain / Early / 0.2
    arthralgia / Delayed / 0.2
    carpal tunnel syndrome / Delayed / 0.2
    lethargy / Early / 0.2
    drowsiness / Early / 0.2
    dysgeusia / Early / 0.2
    syncope / Early / 0.2
    anxiety / Delayed / 0.2
    paresthesias / Delayed / 0.2
    insomnia / Early / 0.2
    tremor / Early / 0.2
    nasal congestion / Early / 0.2
    cough / Delayed / 0.2
    rash / Early / 0.2
    hyperhidrosis / Delayed / 0.2
    diaphoresis / Early / 0.2
    chills / Rapid / 0.2
    asthenia / Delayed / 0.2
    malaise / Early / 0.2
    tinnitus / Delayed / 0.2
    rhinitis / Early / 0.2
    night sweats / Early / 0.2
    influenza / Delayed / 0.2
    vertigo / Early / 0.2
    pruritus / Rapid / 0.2
    alopecia / Delayed / Incidence not known
    urticaria / Rapid / Incidence not known
    photosensitivity / Delayed / Incidence not known
    purpura / Delayed / Incidence not known

    DRUG INTERACTIONS

    Acarbose: (Moderate) Angiotensin II receptor antagonists (ARBs) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Acebutolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
    Acetaminophen; Butalbital; Caffeine; Codeine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a thiazide diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Acetaminophen; Chlorpheniramine; Phenylephrine; Phenyltoloxamine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Acetaminophen; Codeine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a thiazide diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Acetaminophen; Dextromethorphan; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Acetaminophen; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Acetaminophen; Dichloralphenazone; Isometheptene: (Major) Isometheptene has sympathomimetic properties. Patients taking antihypertensive agents may need to have their therapy modified. Careful blood pressure monitoring is recommended. (Moderate) Isometheptene has sympathomimetic properties. Patients taking antihypertensive agents may need to have their therapy modified. Careful blood pressure monitoring is recommended.
    Acetaminophen; Guaifenesin; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Acetaminophen; Hydrocodone: (Moderate) Monitor for an increase in hydrocodone-related adverse reactions, including sedation and respiratory depression, if coadministration with amlodipine is necessary; consider reducing the dose of hydrocodone if clinically appropriate. If amlodipine is discontinued, monitor for evidence of opioid withdrawal until stable drug effects are achieved and consider increasing the hydrocodone dose if necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. If amlodipine is discontinued, hydrocodone plasma concentrations may decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Acetaminophen; Oxycodone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Acetaminophen; Pentazocine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with pentazocine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Acetaminophen; Propoxyphene: (Moderate) Amlodipine is a CYP3A4 substrate. CYP3A4 inhibitors, such as propoxyphene, may increase the plasma concentration of amlodipine via CYP3A4 inhibition; this effect might lead to hypotension in some individuals. Caution should be used when propoxyphene is coadministered with amlodipine; therapeutic response should be monitored.
    Acetaminophen; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Acetaminophen; Tramadol: (Moderate) Consider a tramadol dosage reduction until stable drug effects are achieved if coadministration with amlodipine is necessary. Closely monitor for seizures, serotonin syndrome, and signs of sedation and respiratory depression. Respiratory depression from increased tramadol exposure may be fatal. Concurrent use of amlodipine, a weak CYP3A4 inhibitor, may increase tramadol exposure and result in greater CYP2D6 metabolism thereby increasing exposure to the active metabolite M1, which is a more potent mu-opioid agonist. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with tramadol. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Acetazolamide: (Moderate) Acetazolamide promotes electrolyte excretion including hydrogen ions, sodium, and potassium. It can enhance the sodium depleting effects of other diuretics when used concurrently. Pre-existing hypokalemia and hyperuricemia can also be potentiated by carbonic anhydrase inhibitors. Monitor serum potassium to determine the need for potassium supplementation and alteration in drug therapy.
    Acetohexamide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Aclidinium; Formoterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
    Acrivastine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Albiglutide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Albuterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
    Albuterol; Ipratropium: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
    Aldesleukin, IL-2: (Moderate) Angiotensin II receptor antagonists may potentiate the hypotension seen with aldesleukin, IL 2. (Moderate) Calcium channel blockers may potentiate the hypotension seen with aldesleukin, IL 2. (Moderate) Thiazide diuretics may potentiate the hypotension seen with aldesleukin, IL 2.
    Alemtuzumab: (Moderate) Alemtuzumab may cause hypotension. Careful monitoring of blood pressure and hypotensive symptoms is recommended especially in patients with ischemic heart disease and in patients on antihypertensive agents. (Moderate) Alemtuzumab may cause hypotension. Careful monitoring of blood pressure and hypotensive symptoms is recommended especially in patients with ischemic heart disease and in patients on antihypertensive agents.
    Alendronate; Cholecalciferol: (Moderate) Dose adjustment of vitamin D or vitamin D analogs may be necessary during coadministration with thiazide diuretics. Additionally, serum calcium concentrations should be monitored frequently. Monitor more frequently in patients with a history of hypercalcemia. Hypercalcemia may be exacerbated by coadministration of vitamin D or vitamin D analogs and thiazide diuretics. Thiazide diuretics are known to induce hypercalcemia by reducing the excretion of calcium in the urine.
    Alfentanil: (Moderate) Consider a reduced dose of alfentanil with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the alfentanil dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Alfentanil is a sensitive CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like amlodipine can increase alfentanil exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of alfentanil. If amlodipine is discontinued, alfentanil plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to alfentanil. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a thiazide diuretic is administered with alfentanil. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Aliskiren: (Major) Aliskiren-containing products are contraindicated in combination with angiotensin II receptor antagonists (ARBs) in patients with diabetes mellitus. In general, avoid combined use of two renin-angiotensin-aldosterone system (RAAS) inhibitors, particularly in patients with CrCl less than 60 mL/minute. Combination therapy increases the risk for hyperkalemia, renal impairment, hypotension, and other side effects. Most patients receiving a comination of two RAAS inhibitors, such as ARBs and aliskiren, do not obtain any additional benefit compared to monotherapy. Closely monitor blood pressure, renal function, and electrolytes if aliskiren must be combined with another RAAS inhibitor. In the ALTITUDE trial, patients with type 2 diabetes and renal impairment, a population at high risk for cardiovascular and renal events, were given aliskiren in addition to ACE inhibitors or ARBs. The trial was stopped early because aliskiren was associated with an increased risk of non-fatal stroke, renal complications, hyperkalemia, and hypotension. In the Veterans Affairs Nephropathy in Diabetes (VA NEPHRON-D) trial, no additional benefit over monotherapy was seen in patients receiving the combination of losartan and lisinopril compared to monotherapy; however, there was an increased incidence of hyperkalemia and acute renal injury.
    Aliskiren; Amlodipine: (Major) Aliskiren-containing products are contraindicated in combination with angiotensin II receptor antagonists (ARBs) in patients with diabetes mellitus. In general, avoid combined use of two renin-angiotensin-aldosterone system (RAAS) inhibitors, particularly in patients with CrCl less than 60 mL/minute. Combination therapy increases the risk for hyperkalemia, renal impairment, hypotension, and other side effects. Most patients receiving a comination of two RAAS inhibitors, such as ARBs and aliskiren, do not obtain any additional benefit compared to monotherapy. Closely monitor blood pressure, renal function, and electrolytes if aliskiren must be combined with another RAAS inhibitor. In the ALTITUDE trial, patients with type 2 diabetes and renal impairment, a population at high risk for cardiovascular and renal events, were given aliskiren in addition to ACE inhibitors or ARBs. The trial was stopped early because aliskiren was associated with an increased risk of non-fatal stroke, renal complications, hyperkalemia, and hypotension. In the Veterans Affairs Nephropathy in Diabetes (VA NEPHRON-D) trial, no additional benefit over monotherapy was seen in patients receiving the combination of losartan and lisinopril compared to monotherapy; however, there was an increased incidence of hyperkalemia and acute renal injury.
    Aliskiren; Amlodipine; Hydrochlorothiazide, HCTZ: (Major) Aliskiren-containing products are contraindicated in combination with angiotensin II receptor antagonists (ARBs) in patients with diabetes mellitus. In general, avoid combined use of two renin-angiotensin-aldosterone system (RAAS) inhibitors, particularly in patients with CrCl less than 60 mL/minute. Combination therapy increases the risk for hyperkalemia, renal impairment, hypotension, and other side effects. Most patients receiving a comination of two RAAS inhibitors, such as ARBs and aliskiren, do not obtain any additional benefit compared to monotherapy. Closely monitor blood pressure, renal function, and electrolytes if aliskiren must be combined with another RAAS inhibitor. In the ALTITUDE trial, patients with type 2 diabetes and renal impairment, a population at high risk for cardiovascular and renal events, were given aliskiren in addition to ACE inhibitors or ARBs. The trial was stopped early because aliskiren was associated with an increased risk of non-fatal stroke, renal complications, hyperkalemia, and hypotension. In the Veterans Affairs Nephropathy in Diabetes (VA NEPHRON-D) trial, no additional benefit over monotherapy was seen in patients receiving the combination of losartan and lisinopril compared to monotherapy; however, there was an increased incidence of hyperkalemia and acute renal injury.
    Aliskiren; Hydrochlorothiazide, HCTZ: (Major) Aliskiren-containing products are contraindicated in combination with angiotensin II receptor antagonists (ARBs) in patients with diabetes mellitus. In general, avoid combined use of two renin-angiotensin-aldosterone system (RAAS) inhibitors, particularly in patients with CrCl less than 60 mL/minute. Combination therapy increases the risk for hyperkalemia, renal impairment, hypotension, and other side effects. Most patients receiving a comination of two RAAS inhibitors, such as ARBs and aliskiren, do not obtain any additional benefit compared to monotherapy. Closely monitor blood pressure, renal function, and electrolytes if aliskiren must be combined with another RAAS inhibitor. In the ALTITUDE trial, patients with type 2 diabetes and renal impairment, a population at high risk for cardiovascular and renal events, were given aliskiren in addition to ACE inhibitors or ARBs. The trial was stopped early because aliskiren was associated with an increased risk of non-fatal stroke, renal complications, hyperkalemia, and hypotension. In the Veterans Affairs Nephropathy in Diabetes (VA NEPHRON-D) trial, no additional benefit over monotherapy was seen in patients receiving the combination of losartan and lisinopril compared to monotherapy; however, there was an increased incidence of hyperkalemia and acute renal injury.
    Aliskiren; Valsartan: (Major) Aliskiren-containing products are contraindicated in combination with angiotensin II receptor antagonists (ARBs) in patients with diabetes mellitus. In general, avoid combined use of two renin-angiotensin-aldosterone system (RAAS) inhibitors, particularly in patients with CrCl less than 60 mL/minute. Combination therapy increases the risk for hyperkalemia, renal impairment, hypotension, and other side effects. Most patients receiving a comination of two RAAS inhibitors, such as ARBs and aliskiren, do not obtain any additional benefit compared to monotherapy. Closely monitor blood pressure, renal function, and electrolytes if aliskiren must be combined with another RAAS inhibitor. In the ALTITUDE trial, patients with type 2 diabetes and renal impairment, a population at high risk for cardiovascular and renal events, were given aliskiren in addition to ACE inhibitors or ARBs. The trial was stopped early because aliskiren was associated with an increased risk of non-fatal stroke, renal complications, hyperkalemia, and hypotension. In the Veterans Affairs Nephropathy in Diabetes (VA NEPHRON-D) trial, no additional benefit over monotherapy was seen in patients receiving the combination of losartan and lisinopril compared to monotherapy; however, there was an increased incidence of hyperkalemia and acute renal injury.
    Allopurinol: (Moderate) The occurrence of certain hypersensitivity reactions may be increased in patients with renal impairment who receive allopurinol and thiazide diuretics in combination. The precise mechanism for such events is unclear but likely immune-mediated and may be related to an effect of oxypurinol; elevated oxypurinol concentrations appear to be associated with hypersensitivity reactions; decreased clearance of this metabolite may occur with renal impairment and with the concurrent use of thiazide diuretics. Severe skin reactions include exfoliative dermatitis, toxic epidermal necrolysis and Steven's Johnson syndrome; some reactions have been fatal. In addition, thiazide diuretics, like hydrochlorothiazide, can cause hyperuricemia. Since thiazides reduce the clearance of uric acid, patients with gout or hyperuricemia may have exacerbations of their disease.
    Alogliptin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Alogliptin; Metformin: (Moderate) Angiotensin II receptor antagonists (ARBs) may enhance the hypoglycemic effects of metformin by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. ARBs may rarely reduce renal function, a risk factor for reduced renal clearance of metformin. Patients receiving these drugs together should be monitored for changes in renal function and glycemic control. (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Alogliptin; Pioglitazone: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Alpha-glucosidase Inhibitors: (Moderate) Angiotensin II receptor antagonists (ARBs) may enhance the hypoglycemic effects of antidiabetic agents by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. Patients receiving an ARB in combination with antidiabetic agents should be monitored for changes in glycemic control. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Alprostadil: (Minor) The concomitant use of systemic alprostadil injection and antihypertensive agents, like calcium channel blockers, may cause additive hypotension. Caution is advised with this combination. Systemic drug interactions with the urethral suppository (MUSE) or alprostadil intracavernous injection are unlikely in most patients because low or undetectable amounts of the drug are found in the peripheral venous circulation following administration. In those men with significant corpora cavernosa venous leakage, hypotension might be more likely. Use caution with in-clinic dosing for erectile dysfunction (ED) and monitor for the effects on blood pressure. In addition, the presence of medications in the circulation that attenuate erectile function may influence the response to alprostadil. However, in clinical trials with alprostadil intracavernous injection, anti-hypertensive agents had no apparent effect on the safety and efficacy of alprostadil. (Minor) The concomitant use of systemic alprostadil injection and antihypertensive agents, such as angiotensin II receptor antagonists (angiotensin receptor blockers, or ARBs), may cause additive hypotension. Caution is advised with this combination. Systemic drug interactions with the urethral suppository (MUSE) or alprostadil intracavernous injection are unlikely in most patients because low or undetectable amounts of the drug are found in the peripheral venous circulation following administration. In those men with significant corpora cavernosa venous leakage, hypotension might be more likely. Use caution with in-clinic dosing for erectile dysfunction (ED) and monitor for the effects on blood pressure. However, in clinical trials with alprostadil intracavernous injection, anti-hypertensive agents had no apparent effect on the safety and efficacy of alprostadil. (Minor) The concomitant use of systemic alprostadil injection and antihypertensive agents, such as thiazide diuretics, may cause additive hypotension. Caution is advised with this combination. Systemic drug interactions with the urethral suppository (MUSE) or alprostadil intracavernous injection are unlikely in most patients because low or undetectable amounts of the drug are found in the peripheral venous circulation following administration. In those men with significant corpora cavernosa venous leakage, hypotension might be more likely. Use caution with in-clinic dosing for erectile dysfunction (ED) and monitor for the effects on blood pressure. In addition, the presence of medications in the circulation that attenuate erectile function may influence the response to alprostadil. However, in clinical trials with alprostadil intracavernous injection, anti-hypertensive agents had no apparent effect on the safety and efficacy of alprostadil.
    Amifostine: (Major) Patients receiving angiotensin II receptor antagonists should be closely monitored during amifostine infusions due to additive effects. Patients receiving amifostine at doses recommended for chemotherapy should have antihypertensive therapy interrupted 24 hours preceding administration of amifostine. If the antihypertensive cannot be stopped, patients should not receive amifostine. (Major) Patients receiving antihypertensive agents should be closely monitored during amifostine infusions due to additive effects. If possible, patients should not take their antihypertensive medication 24 hours before receiving amifostine. Patients who can not stop their antihypertensive agents should not receive amifostine or be closely monitored during the infusion and, possibly, given lower doses. (Major) Patients receiving calcium-channel blockers should be closely monitored during amifostine infusions due to additive effects. Patients receiving amifostine at doses recommended for chemotherapy should have antihypertensive therapy interrupted 24 hours preceding administration of amifostine. If the antihypertensive cannot be stopped for 24 hours before chemotherapy doses of amifostine, patients should not receive amifostine.
    Amiloride: (Major) Potassium-sparing diuretics, such as amiloride, should be used with caution in patients taking drugs that may increase serum potassium levels such as angiotensin II receptor antagonists. Concurrent use can cause hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
    Amiloride; Hydrochlorothiazide, HCTZ: (Major) Potassium-sparing diuretics, such as amiloride, should be used with caution in patients taking drugs that may increase serum potassium levels such as angiotensin II receptor antagonists. Concurrent use can cause hyperkalemia, especially in elderly patients or patients with impaired renal function. Coadministration may also result in increases in serum creatinine in heart failure patients.
    Aminolevulinic Acid: (Moderate) Thiazide diuretics may cause photosensitivity and may increase the photosensitization effects of photosensitizing agents used in photodynamic therapy. Prevention of photosensitivity includes adequate protection from sources of UV radiation (e.g., avoiding sun exposure and tanning booths) and the use of protective clothing and sunscreens on exposed skin. (Minor) Preclinical data suggest that calcium-channel blockers could decrease the efficacy of photosensitizing agents used in photodynamic therapy.
    Amiodarone: (Major) Since antiarrhythmic drugs may be ineffective or may be arrhythmogenic in patients with hypokalemia, any potassium or magnesium deficiency should be corrected before instituting and during amiodarone therapy. Use caution when coadministering amiodarone with drugs which may induce hypokalemia and, or hypomagnesemia including thiazide diuretics. (Moderate) Amlodipine is a CYP3A4 substrate. Theoretically, CYP3A4 inhibitors, such as amiodarone, may increase the plasma concentration of amlodipine via CYP3A4 inhibition; this effect might lead to hypotension in some individuals. Caution should be used when amiodarone is coadministered with amlodipine; therapeutic response should be monitored.
    Amlodipine; Benazepril: (Moderate) Patients with hyponatremia or hypovolemia are more susceptible to developing reversible renal insufficiency when given angiotensin converting enzyme (ACE) inhibitors and diuretics concomitantly.
    Amobarbital: (Moderate) Concurrent use of amobarbital with antihypertensive agents may lead to hypotension. Monitor for decreases in blood pressure during times of coadministration.
    Amoxicillin; Clarithromycin; Lansoprazole: (Major) Avoid coadministration of clarithromycin and amlodipine, particularly in geriatric patients, due to an increased risk of hypotension and acute kidney injury. If the use of a macrolide antibiotic is necessary in a patient receiving amlodipine therapy, azithromycin is the preferred agent. If coadministration is unavoidable, monitor for symptoms of hypotension and edema; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A4 substrate and clarithromycin is a strong CYP3A4 inhibitor. A retrospective, case crossover study, found the risk of hospitalization due to hypotension or shock to be significantly increased in geriatric patients exposed to clarithromycin during concurrent calcium-channel blocker therapy (OR 3.7, 95% CI 2.3-6.1). Concurrent use of azithromycin was not associated with an increased risk of hypotension (OR 1.5, 95% CI 0.8-2.8). (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with thiazide diuretics (chlorothiazide, hydrochlorothiazide, indapamide, and metolazone). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
    Amoxicillin; Clarithromycin; Omeprazole: (Major) Avoid coadministration of clarithromycin and amlodipine, particularly in geriatric patients, due to an increased risk of hypotension and acute kidney injury. If the use of a macrolide antibiotic is necessary in a patient receiving amlodipine therapy, azithromycin is the preferred agent. If coadministration is unavoidable, monitor for symptoms of hypotension and edema; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A4 substrate and clarithromycin is a strong CYP3A4 inhibitor. A retrospective, case crossover study, found the risk of hospitalization due to hypotension or shock to be significantly increased in geriatric patients exposed to clarithromycin during concurrent calcium-channel blocker therapy (OR 3.7, 95% CI 2.3-6.1). Concurrent use of azithromycin was not associated with an increased risk of hypotension (OR 1.5, 95% CI 0.8-2.8). (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with thiazide diuretics (chlorothiazide, hydrochlorothiazide, indapamide, and metolazone). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
    Amphetamine; Dextroamphetamine Salts: (Minor) Amphetamines increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like calcium-channel blockers. Close monitoring of blood pressure is advised. (Minor) Amphetamines increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as angiotensin II receptor antagonists. Close monitoring of blood pressure is advised. (Minor) Amphetamines may counteract the activity of some antihypertensive agents, such as thiazide diuretics. Close monitoring of blood pressure is advised. Thiazide diuretics may also increase and prolong the actions of amphetamines by increasing the urinary pH.
    Amphotericin B cholesteryl sulfate complex (ABCD): (Moderate) The risk of developing severe hypokalemia can be increased when amphotericin B is coadministered with thiazide diuretics. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Amphotericin B lipid complex (ABLC): (Moderate) The risk of developing severe hypokalemia can be increased when amphotericin B is coadministered with thiazide diuretics. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Amphotericin B liposomal (LAmB): (Moderate) The risk of developing severe hypokalemia can be increased when amphotericin B is coadministered with thiazide diuretics. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Amphotericin B: (Moderate) The risk of developing severe hypokalemia can be increased when amphotericin B is coadministered with thiazide diuretics. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Amprenavir: (Moderate) Amlodipine is a CYP3A4 substrate. Theoretically, CYP3A4 inhibitors, such as anti-retroviral protease inhibitors, may increase the plasma concentration of amlodipine via CYP3A4 inhibition; this effect might lead to hypotension in some individuals. Caution should be used when anti-retroviral protease inhibitors are coadministered with amlodipine; therapeutic response should be monitored. Ritonavir also prolongs the PR interval in some patients; however, the impact on the PR interval of coadministration of ritonavir with other drugs that prolong the PR interval (including calcium channel blockers) has not been evaluated. If coadministration of these drugs is warranted, do so with caution and careful monitoring. Decreased calcium-channel blocker doses may be warranted.
    Amyl Nitrite: (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary. (Moderate) Concomitant use of nitrates with other antihypertensive agents can cause additive hypotensive effects. Dosage adjustments may be necessary. (Moderate) Nitroglycerin can cause hypotension. This action may be additive with other agents that can cause hypotension such as calcium-channel blockers. Patients should be monitored more closely for hypotension if nitroglycerin, including nitroglycerin rectal ointment, is used concurrently with a calcium-channel blocker.
    Angiotensin II: (Moderate) Angiotensin II receptor antagonists (angiotensin receptor blockers, or ARBs) may decrease the response to angiotensin II. Angiotensin II is a naturally occurring peptide hormone of the renin-angiotensin-aldosterone system (RAAS) that causes vasoconstriction and an increase in blood pressure. ARBs block the vasoconstrictor and aldosterone-secreting effects of angiotensin II by selectively blocking the binding of angiotensin II to the angiotensin receptor in many tissues.
    Angiotensin-converting enzyme inhibitors: (Major) Most patients receiving the combination of two renin-angiotensin-aldosterone system (RAAS) inhibitors, such as angiotensin-converting enzyme inhibitors (ACE inhibitors) and angiotensin II receptor antagonists (ARBs) do not obtain any additional benefit compared to monotherapy. Combination therapy has been associated with an increased risk of diarrhea, hypotension, syncope, hyperkalemia, and renal dysfunction resulting in dialysis, doubling of serum creatinine, and death in clinical studies. The risk of hyperkalemia is particularly high in patients with renal impairment (stage 3a or higher kidney disease). In general, avoid combined use of these drugs together. Patients who must receive concomitant therapy with ACE inhibitors and ARBs should be closely monitored for renal dysfunction, hypotension, and hyperkalemia. Closely monitor blood pressure, renal function, and electrolytes. (Moderate) Patients with hyponatremia or hypovolemia are more susceptible to developing reversible renal insufficiency when given angiotensin converting enzyme (ACE) inhibitors and diuretics concomitantly.
    Anticholinergics: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
    Apalutamide: (Moderate) Closely monitor blood pressure if coadministration of amlodipine with apalutamide is necessary. Amlodipine is a CYP3A4 substrate and apalutamide is a strong CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
    Apomorphine: (Moderate) Use of angiotensin II receptor antagonists and apomorphine together can increase the hypotensive effects of apomorphine. Monitor blood pressure regularly during use of this combination. (Moderate) Use of calcium-channel blockers and apomorphine together can increase the hypotensive effects of apomorphine. Monitor blood pressure regularly during use of this combination. (Moderate) Use of thiazide diuretics and apomorphine together can increase the hypotensive effects of apomorphine. Monitor blood pressure regularly during use of this combination.
    Apraclonidine: (Minor) Alpha blockers as a class may reduce heart rate and blood pressure. While no specific drug interactions have been identified with systemic agents and apraclonidine during clinical trials, it is theoretically possible that additive blood pressure reductions could occur when apraclonidine is combined with the use of antihypertensive agents. Patients using cardiovascular drugs concomitantly with apraclonidine should have their pulse and blood pressure monitored periodically. (Minor) Apraclonidine had minimal effects on heart rate and blood pressure during clinical studies in patients with glaucoma. However, it is theoretically possible that additive blood pressure reductions could occur when apraclonidine is combined with the use of antihypertensive agents. Use caution during concurrent use, especially in patients with severe, uncontrolled cardiovascular disease, including hypertension.
    Aprepitant, Fosaprepitant: (Moderate) Use caution if amlodipine and a multi-day regimen of oral aprepitant are used concurrently; monitor for an increase in amlodipine-related adverse effects for several days after administration. Amlodipine is a CYP3A4 substrate. Aprepitant, when administered as a 3-day oral regimen (125 mg/80 mg/80 mg), is a moderate CYP3A4 inhibitor and inducer and may increase plasma concentrations of amlodipine. For example, a 5-day oral aprepitant regimen increased the AUC of another CYP3A4 substrate, midazolam (single dose), by 2.3-fold on day 1 and by 3.3-fold on day 5. After a 3-day oral aprepitant regimen, the AUC of midazolam (given on days 1, 4, 8, and 15) increased by 25% on day 4, and then decreased by 19% and 4% on days 8 and 15, respectively. As a single 125 mg or 40 mg oral dose, the inhibitory effect of aprepitant on CYP3A4 is weak, with the AUC of midazolam increased by 1.5-fold and 1.2-fold, respectively. After administration, fosaprepitant is rapidly converted to aprepitant and shares many of the same drug interactions. However, as a single 150 mg intravenous dose, fosaprepitant only weakly inhibits CYP3A4 for a duration of 2 days; there is no evidence of CYP3A4 induction. Fosaprepitant 150 mg IV as a single dose increased the AUC of midazolam (given on days 1 and 4) by approximately 1.8-fold on day 1; there was no effect on day 4. Less than a 2-fold increase in the midazolam AUC is not considered clinically important. (Minor) Use caution if valsartan and aprepitant are used concurrently and monitor for a possible decrease in the efficacy of valsartan. After administration, fosaprepitant is rapidly converted to aprepitant and shares the same drug interactions. Valsartan is a CYP2C9 substrate and aprepitant is a CYP2C9 inducer. Administration of a CYP2C9 substrate, tolbutamide, on days 1, 4, 8, and 15 with a 3-day regimen of oral aprepitant (125 mg/80 mg/80 mg) decreased the tolbutamide AUC by 23% on day 4, 28% on day 8, and 15% on day 15. The AUC of tolbutamide was decreased by 8% on day 2, 16% on day 4, 15% on day 8, and 10% on day 15 when given prior to oral administration of aprepitant 40 mg on day 1, and on days 2, 4, 8, and 15. The effects of aprepitant on tolbutamide were not considered significant. When a 3-day regimen of aprepitant (125 mg/80 mg/80 mg) given to healthy patients on stabilized chronic warfarin therapy (another CYP2C9 substrate), a 34% decrease in S-warfarin trough concentrations was noted, accompanied by a 14% decrease in the INR at five days after completion of aprepitant.
    Arformoterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
    Aripiprazole: (Minor) Aripiprazole may enhance the hypotensive effects of antihypertensive agents.
    Armodafinil: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as armodafinil are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
    Arsenic Trioxide: (Moderate) Concomitant use of thiazide diuretics and arsenic trioxide should be done cautiously. Electrolyte abnormalities, such as hypokalemia and hypomagnesemia, may increase the risk for QT prolongation and torsade de pointes.
    Articaine; Epinephrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives such as metolazone when administered concomitantly.
    Asenapine: (Moderate) Secondary to alpha-blockade, asenapine can produce vasodilation that may result in additive effects during concurrent use of antihypertensive agents. The potential reduction in blood pressure can precipitate orthostatic hypotension and associated dizziness, tachycardia, and syncope. If concurrent use of asenapine and antihypertensive agents is necessary, patients should be counseled on measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning and rising slowly from a seated position. Close monitoring of blood pressure is recommended until the full effects of the combination therapy are known.
    Aspirin, ASA; Butalbital; Caffeine; Codeine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a thiazide diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Aspirin, ASA; Caffeine; Dihydrocodeine: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Aspirin, ASA; Carisoprodol; Codeine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a thiazide diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Aspirin, ASA; Omeprazole: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with thiazide diuretics (chlorothiazide, hydrochlorothiazide, indapamide, and metolazone). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
    Aspirin, ASA; Oxycodone: (Moderate) Consider a reduced dose of oxycodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. If amlodipine is discontinued, consider increasing the oxycodone dose until stable drug effects are achieved and monitor for evidence of opioid withdrawal. Oxycodone is a CYP3A4 substrate, and coadministration with a weak inhibitor like amlodipine can increase oxycodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of oxycodone. If amlodipine is discontinued, oxycodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to oxycodone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with oxycodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Atazanavir: (Moderate) Amlodipine is a CYP3A4 substrate. Theoretically, CYP3A4 inhibitors, such as anti-retroviral protease inhibitors, may increase the plasma concentration of amlodipine via CYP3A4 inhibition; this effect might lead to hypotension in some individuals. Caution should be used when anti-retroviral protease inhibitors are coadministered with amlodipine; therapeutic response should be monitored. Ritonavir also prolongs the PR interval in some patients; however, the impact on the PR interval of coadministration of ritonavir with other drugs that prolong the PR interval (including calcium channel blockers) has not been evaluated. If coadministration of these drugs is warranted, do so with caution and careful monitoring. Decreased calcium-channel blocker doses may be warranted. (Moderate) Concurrent use of atazanavir with valsartan may result in elevated valsartan serum concentrations. Valsartan is a substrate for the drug transporter organic anion transporting polypeptide (OATP1B1/1B3); atazanavir is an OATP1B1 inhibitor. Monitor for increased toxicities if these drugs are given together.
    Atazanavir; Cobicistat: (Moderate) Amlodipine is a CYP3A4 substrate. Theoretically, CYP3A4 inhibitors, such as anti-retroviral protease inhibitors, may increase the plasma concentration of amlodipine via CYP3A4 inhibition; this effect might lead to hypotension in some individuals. Caution should be used when anti-retroviral protease inhibitors are coadministered with amlodipine; therapeutic response should be monitored. Ritonavir also prolongs the PR interval in some patients; however, the impact on the PR interval of coadministration of ritonavir with other drugs that prolong the PR interval (including calcium channel blockers) has not been evaluated. If coadministration of these drugs is warranted, do so with caution and careful monitoring. Decreased calcium-channel blocker doses may be warranted. (Moderate) Concurrent use of atazanavir with valsartan may result in elevated valsartan serum concentrations. Valsartan is a substrate for the drug transporter organic anion transporting polypeptide (OATP1B1/1B3); atazanavir is an OATP1B1 inhibitor. Monitor for increased toxicities if these drugs are given together. (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with cobicistat is necessary; adjust the dose of amlodipine as clinically appropriate. Cobicistat is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent. (Minor) Caution is warranted when cobicistat is administered with valsartan as there is a potential for increased valsartan concentrations. Valsartan is a substrate of organic anion transporting polypeptide (OATP)1B1. Cobicistat is an inhibitor of OATP.
    Atenolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
    Atenolol; Chlorthalidone: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
    Atracurium: (Moderate) Concomitant administration of hydrochlorothiazide to patients receiving nondepolarizing neuromuscular blockers (e.g., tubocurarine) can cause prolonged neuromuscular blockade due to hydrochlorothiazide-induced hypokalemia. Serum potassium concentrations should be determined and corrected (if necessary) prior to initiation of neuromuscular blockade therapy.
    Atropine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
    Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
    Atropine; Difenoxin: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
    Atropine; Diphenoxylate: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
    Atropine; Edrophonium: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
    Atropine; Hyoscyamine; Phenobarbital; Scopolamine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
    Avanafil: (Moderate) Avanafil is a substrate of and primarily metabolized by CYP3A4. Particular caution should be used when prescribing avanafil to patients receiving concomitant CYP3A4 substrates, such as amlodipine. Coadministration of avanafil with amlodipine increased the Cmax and AUC of avanafil by approximately 22% and 70%, respectively. The half-life of avanafil was prolonged to approximately 10 hrs. The Cmax and AUC of amlodipine decreased by approximately 9% and 4%, respectively. In addition, in a clinical pharmacology trial, additional reductions in blood pressure of 3 to 5 mmHg occurred following co-administration of a single avanafil (200 mg) dose with amlodipine compared with placebo. Patients should be monitored carefully and drug dosages should be adjusted based on clinical response.
    Baclofen: (Moderate) Baclofen has been associated with hypotension. Concurrent use with baclofen and antihypertensive agents may result in additive hypotension. Dosage adjustments of the antihypertensive medication may be required.
    Barbiturates: (Major) Barbiturates may induce the CYP3A4 metabolism of calcium-channel blockers such as amlodipine, and thereby reduce their oral bioavailability. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers; monitor blood pressure closely. (Moderate) Barbiturates may potentiate orthostatic hypotension when used concurrently with thiazide diuretics.
    Belladonna Alkaloids; Ergotamine; Phenobarbital: (Moderate) Be alert for symptoms of ergot toxicity if using ergotamine and amlodipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of amlodipine, a weak CYP3A4 inhibitor, and ergotamine, a CYP3A4 substrate with a narrow therapeutic range, may result in increased ergot alkaloid levels. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
    Belladonna; Opium: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with opium. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
    Benazepril: (Moderate) Patients with hyponatremia or hypovolemia are more susceptible to developing reversible renal insufficiency when given angiotensin converting enzyme (ACE) inhibitors and diuretics concomitantly.
    Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Patients with hyponatremia or hypovolemia are more susceptible to developing reversible renal insufficiency when given angiotensin converting enzyme (ACE) inhibitors and diuretics concomitantly.
    Bendroflumethiazide; Nadolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
    Benzhydrocodone; Acetaminophen: (Moderate) Benzhydrocodone may reduce the efficacy of diuretics due to induction of the release of antidiuretic hormone. Adjustments to diuretic therapy may be needed in some patients. In addition, opiate agonists may potentiate orthostatic hypotension when used concurrently with diuretics. (Moderate) Concurrent use of benzhydrocodone with amlodipine may increase the risk of increased opioid-related adverse reactions, such as fatal respiratory depression. Consider a dose reduction of benzhydrocodone until stable drug effects are achieved. Monitor patients for respiratory depression and sedation at frequent intervals. Discontinuation of amlodipine in a patient taking benzhydrocodone may decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to opioid agonists. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Benzhydrocodone is a prodrug for hydrocodone. Hydrocodone is a substrate for CYP3A4. Amlodipine is a weak inhibitor of CYP3A4.
    Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Moderate) Thiazide diuretics may cause the urine to become alkaline. This may reduce the effectiveness of methenamine by inhibiting its conversion to formaldehyde. (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
    Benzonatate: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents.
    Benzphetamine: (Minor) Amphetamines may counteract the activity of some antihypertensive agents, such as thiazide diuretics. Close monitoring of blood pressure is advised. Thiazide diuretics may also increase and prolong the actions of amphetamines by increasing the urinary pH. (Minor) Benzphetamine may increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, such as angiotensin II receptor antagonists. Close monitoring of blood pressure is advised. (Minor) Benzphetamine might increase both systolic and diastolic blood pressure and may counteract the activity of some antihypertensive agents, like calcium-channel blockers. Close monitoring of blood pressure is advised.
    Benztropine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
    Beta-agonists: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
    Beta-blockers: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
    Betaxolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
    Bexarotene: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as bexarotene, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
    Bisoprolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
    Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
    Boceprevir: (Moderate) Close clinical monitoring is advised when administering amlodipine with boceprevir due to an increased potential for amlodipine-related adverse events. A reduction in the dose of amlodipine may be considered. If amlodipine dose adjustments are made, re-adjust the dose upon completion of boceprevir treatment. Predictions about the interaction can be made based on the metabolic pathway of amlodipine. Amlodipine is metabolized by the hepatic isoenzyme CYP3A4; boceprevir inhibits this isoenzyme. Coadministration may result in elevated amlodipine plasma concentrations.
    Bortezomib: (Moderate) Patients on antihypertensive agents receiving bortezomib treatment may require close monitoring of their blood pressure and dosage adjustment of their medication. During clinical trials of bortezomib, hypotension was reported in roughly 12 percent of patients.
    Bosentan: (Moderate) Although no specific interactions have been documented, bosentan has vasodilatory effects and may contribute additive hypotensive effects when given with angiotensin II receptor antagonists. Losartan has no effect on plasma concentrations of bosentan. However, bosentan may theoretically induce the metabolism of losartan via CYP2C9 isoenzymes (clinical significance unknown). (Moderate) Although no specific interactions have been documented, bosentan has vasodilatory effects and may contribute additive hypotensive effects when given with diuretics. (Moderate) Closely monitor blood pressure if coadministration of amlodipine with bosentan is necessary. Amlodipine is a CYP3A4 substrate and bosentan is a moderate CYP3A4 inducer. No information is available on the quantitative effects of CYP3A inducers on amlodipine; however, concomitant use may result in decreased plasma concentrations of amlodipine.
    Brexpiprazole: (Moderate) Due to brexpiprazole's antagonism at alpha 1-adrenergic receptors, the drug may enhance the hypotensive effects of alpha-blockers and other antihypertensive agents.
    Brimonidine; Timolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
    Brompheniramine; Carbetapentane; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Brompheniramine; Guaifenesin; Hydrocodone: (Moderate) Monitor for an increase in hydrocodone-related adverse reactions, including sedation and respiratory depression, if coadministration with amlodipine is necessary; consider reducing the dose of hydrocodone if clinically appropriate. If amlodipine is discontinued, monitor for evidence of opioid withdrawal until stable drug effects are achieved and consider increasing the hydrocodone dose if necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. If amlodipine is discontinued, hydrocodone plasma concentrations may decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Brompheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for an increase in hydrocodone-related adverse reactions, including sedation and respiratory depression, if coadministration with amlodipine is necessary; consider reducing the dose of hydrocodone if clinically appropriate. If amlodipine is discontinued, monitor for evidence of opioid withdrawal until stable drug effects are achieved and consider increasing the hydrocodone dose if necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. If amlodipine is discontinued, hydrocodone plasma concentrations may decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Brompheniramine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Budesonide; Formoterol: (Minor) Hypokalemia associated with thiazide diuretics can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is unknown, use caution when coadministering beta-agonists with thiazide diuretics and monitor serum potassium as clinically indicated.
    Bupivacaine; Lidocaine: (Moderate) Concomitant use of systemic lidocaine and amlodipine may increase lidocaine plasma concentrations by decreasing lidocaine clearance and therefore prolonging the elimination half-life. Monitor for lidocaine toxicity if used together. Lidocaine is a CYP3A4 and CYP1A2 substrate; amlodipine inhibits CYP3A4.
    Buprenorphine: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a thiazide diuretic is administered with buprenorphine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Buprenorphine; Naloxone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a thiazide diuretic is administered with buprenorphine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Cabergoline: (Minor) Cabergoline has minimal affinity for adrenergic receptors; however, it has been associated with hypotension in some instances. Cabergoline should be used cautiously in those receiving antihypertensive agents.
    Caffeine; Ergotamine: (Moderate) Be alert for symptoms of ergot toxicity if using ergotamine and amlodipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of amlodipine, a weak CYP3A4 inhibitor, and ergotamine, a CYP3A4 substrate with a narrow therapeutic range, may result in increased ergot alkaloid levels.
    Calcium Phosphate, Supersaturated: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as angiotensin II receptor antagonists, may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous. (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as diuretics, may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous.
    Calcium: (Moderate) The simultaneous administration of thiazide diuretics and calcium salts or calcium carbonate may lead to hypercalcemia. Thiazides cause a decrease in renal tubular excretion of calcium as well as increase in distal tubular reabsorption. Moderate increases in serum calcium have been seen during the treatment with thiazides; if calcium salts are used concomitantly, careful monitoring of serum calcium in recommended.
    Calcium; Vitamin D: (Moderate) Dose adjustment of vitamin D or vitamin D analogs may be necessary during coadministration with thiazide diuretics. Additionally, serum calcium concentrations should be monitored frequently. Monitor more frequently in patients with a history of hypercalcemia. Hypercalcemia may be exacerbated by coadministration of vitamin D or vitamin D analogs and thiazide diuretics. Thiazide diuretics are known to induce hypercalcemia by reducing the excretion of calcium in the urine.
    Canagliflozin: (Moderate) When canagliflozin is initiated in patients already receiving diuretics, symptomatic hypotension can occur. Patients with impaired renal function (eGFR < 60 ml/min/1.73 m2), low systolic blood pressure, or who are elderly may also be at a greater risk. Before initiating canagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, thiazide diuretics, can also decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. Thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients receiving canagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Canagliflozin; Metformin: (Moderate) Angiotensin II receptor antagonists (ARBs) may enhance the hypoglycemic effects of metformin by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. ARBs may rarely reduce renal function, a risk factor for reduced renal clearance of metformin. Patients receiving these drugs together should be monitored for changes in renal function and glycemic control. (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) When canagliflozin is initiated in patients already receiving diuretics, symptomatic hypotension can occur. Patients with impaired renal function (eGFR < 60 ml/min/1.73 m2), low systolic blood pressure, or who are elderly may also be at a greater risk. Before initiating canagliflozin in patients with one or more of these characteristics, volume status should be assessed and corrected. Monitor for signs and symptoms after initiating therapy. In addition, thiazide diuretics, can also decrease the hypoglycemic effects of antidiabetic agents by producing an increase in blood glucose concentrations. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. Thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients receiving canagliflozin should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Captopril: (Moderate) Patients with hyponatremia or hypovolemia are more susceptible to developing reversible renal insufficiency when given angiotensin converting enzyme (ACE) inhibitors and diuretics concomitantly.
    Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Patients with hyponatremia or hypovolemia are more susceptible to developing reversible renal insufficiency when given angiotensin converting enzyme (ACE) inhibitors and diuretics concomitantly.
    Carbamazepine: (Moderate) Both thiazide diuretics and carbamazepine are associated with hyponatremia. Coadministration may result in an additive risk of developing hyponatremia. When concurrent therapy with a thiazide diuretic and carbamazepine is necessary, monitor patients for hyponatremia. (Moderate) Monitor for increased carbamazepine adverse reactions if coadministered with amlodipine. Taking these drugs together may increase carbamazepine plasma concentrations, potentially resulting in adverse events. Amlodipine is a weak CYP3A4 inhibitor; carbamazepine is a substrate of CYP3A4 with a narrow therapeutic index. In addition, carbamazepine may induce the hepatic metabolism of calcium-channel blockers by the CYP3A4 isoenzyme; which reduces the oral bioavailability. The dosage requirements of amlodipine may be increased in patients receiving concurrent enzyme inducers.
    Carbetapentane; Chlorpheniramine; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Carbetapentane; Diphenhydramine; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Carbetapentane; Guaifenesin; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Carbetapentane; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Carbetapentane; Phenylephrine; Pyrilamine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Carbetapentane; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Carbidopa; Levodopa: (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects. (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects.
    Carbidopa; Levodopa; Entacapone: (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects. (Moderate) Concomitant use of antihypertensive agents with levodopa can result in additive hypotensive effects.
    Carbinoxamine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Carbinoxamine; Hydrocodone; Phenylephrine: (Moderate) Monitor for an increase in hydrocodone-related adverse reactions, including sedation and respiratory depression, if coadministration with amlodipine is necessary; consider reducing the dose of hydrocodone if clinically appropriate. If amlodipine is discontinued, monitor for evidence of opioid withdrawal until stable drug effects are achieved and consider increasing the hydrocodone dose if necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. If amlodipine is discontinued, hydrocodone plasma concentrations may decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Carbinoxamine; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for an increase in hydrocodone-related adverse reactions, including sedation and respiratory depression, if coadministration with amlodipine is necessary; consider reducing the dose of hydrocodone if clinically appropriate. If amlodipine is discontinued, monitor for evidence of opioid withdrawal until stable drug effects are achieved and consider increasing the hydrocodone dose if necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. If amlodipine is discontinued, hydrocodone plasma concentrations may decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Carbinoxamine; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Carbinoxamine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Cardiac glycosides: (Moderate) Thiazide diuretics can cause hypokalemia, hypomagnesemia, or hypercalcemia which may increase digoxin's pharmacologic effect. Close monitoring of serum digoxin concentrations is essential to avoid enhanced toxicity. It is also recommended that serum potassium, magnesium, and calcium be monitored regularly in patients receiving digoxin.
    Cariprazine: (Moderate) Orthostatic vital signs should be monitored in patients who are at risk for hypotension, such as those receiving cariprazine in combination with antihypertensive agents. Atypical antipsychotics may cause orthostatic hypotension and syncope, most commonly during treatment initiation and dosage increases. Patients should be informed about measures to prevent orthostatic hypotension, such as sitting on the edge of the bed for several minutes prior to standing in the morning, or rising slowly from a seated position. Consider a cariprazine dose reduction if hypotension occurs.
    Carteolol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
    Carvedilol: (Moderate) Coadministration of amlodipine and beta-blockers can reduce angina and improve exercise tolerance. When these drugs are given together, however, hypotension and impaired cardiac performance can occur, especially in patients with left ventricular dysfunction, cardiac arrhythmias, or aortic stenosis.
    Celecoxib: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Ceritinib: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with ceritinib is necessary; adjust the dose of amlodipine as clinically appropriate. Ceritinib is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent.
    Cetirizine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Chlophedianol; Guaifenesin; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Chloramphenicol: (Moderate) Amlodipine is a CYP3A4 substrate. Theoretically, CYP3A4 inhibitors, such as chloramphenicol, may increase the plasma concentration of amlodipine via CYP3A4 inhibition; this effect might lead to hypotension in some individuals. Caution should be used when chloramphenicol is coadministered with amlodipine; therapeutic response should be monitored.
    Chlordiazepoxide; Clidinium: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
    Chloroprocaine: (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents. (Moderate) Local anesthetics may cause additive hypotension in combination with antihypertensive agents.
    Chlorpheniramine; Codeine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a thiazide diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Chlorpheniramine; Dextromethorphan; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Chlorpheniramine; Dihydrocodeine; Pseudoephedrine: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Chlorpheniramine; Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for an increase in hydrocodone-related adverse reactions, including sedation and respiratory depression, if coadministration with amlodipine is necessary; consider reducing the dose of hydrocodone if clinically appropriate. If amlodipine is discontinued, monitor for evidence of opioid withdrawal until stable drug effects are achieved and consider increasing the hydrocodone dose if necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. If amlodipine is discontinued, hydrocodone plasma concentrations may decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Chlorpheniramine; Hydrocodone: (Moderate) Monitor for an increase in hydrocodone-related adverse reactions, including sedation and respiratory depression, if coadministration with amlodipine is necessary; consider reducing the dose of hydrocodone if clinically appropriate. If amlodipine is discontinued, monitor for evidence of opioid withdrawal until stable drug effects are achieved and consider increasing the hydrocodone dose if necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. If amlodipine is discontinued, hydrocodone plasma concentrations may decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Chlorpheniramine; Hydrocodone; Phenylephrine: (Moderate) Monitor for an increase in hydrocodone-related adverse reactions, including sedation and respiratory depression, if coadministration with amlodipine is necessary; consider reducing the dose of hydrocodone if clinically appropriate. If amlodipine is discontinued, monitor for evidence of opioid withdrawal until stable drug effects are achieved and consider increasing the hydrocodone dose if necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. If amlodipine is discontinued, hydrocodone plasma concentrations may decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Chlorpheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Monitor for an increase in hydrocodone-related adverse reactions, including sedation and respiratory depression, if coadministration with amlodipine is necessary; consider reducing the dose of hydrocodone if clinically appropriate. If amlodipine is discontinued, monitor for evidence of opioid withdrawal until stable drug effects are achieved and consider increasing the hydrocodone dose if necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. If amlodipine is discontinued, hydrocodone plasma concentrations may decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Chlorpheniramine; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Chlorpheniramine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Chlorpropamide: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Cholestyramine: (Moderate) Cholestyramine, an ion exchange resin, binds hydrochlorothiazide and reduces its absorption from the gastrointestinal tract by up to 85% when co-administered as single doses. Although the manufacturer for Questran recommends that other medicines be taken at least 1 hour before or 4-6 hours after cholestyramine, it has been recommended that thiazides be administered at least 4 hours before or after cholestyramine to minimize the reduction in absorption. By administering hydrochlorothiazide at least 4 hours before cholestyramine, the decrease in absorption of hydrochlorothiazide is approximately 30-35%.
    Cidofovir: (Severe) The administration of cidofovir with another potentially nephrotoxic agent, such as diuretics, is contraindicated. Diuretics should be discontinued at least 7 days prior to beginning cidofovir.
    Ciprofloxacin: (Moderate) Administering amlodipine with CYP3A4 inhibitors, such as ciprofloxacin, may increase the plasma concentration of amlodipine; this effect might lead to hypotension in some individuals. Caution should be used when ciprofloxacin is coadministered with amlodipine; therapeutic response should be monitored.
    Cisapride: (Major) Cisapride should be used with great caution in patients receiving thiazide diuretics. Drugs that are associated with depletion of electrolytes may cause cisapride-induced cardiac arrhythmias. Serum electrolytes and creatinine should be assessed prior to administration of cisapride and whenever conditions develop that may affect electrolyte imbalance or renal function. (Moderate) Use caution when administering amlodipine with cisapride. Taking these drugs together may increase cisapride plasma concentrations, potentially resulting in adverse events. Amlodipine is a weak CYP3A4 inhibitor; cisapride is a substrate of CYP3A4 with a narrow therapeutic index.
    Cisatracurium: (Moderate) Concomitant administration of hydrochlorothiazide to patients receiving nondepolarizing neuromuscular blockers (e.g., tubocurarine) can cause prolonged neuromuscular blockade due to hydrochlorothiazide-induced hypokalemia. Serum potassium concentrations should be determined and corrected (if necessary) prior to initiation of neuromuscular blockade therapy.
    Citalopram: (Moderate) Citalopram causes dose-dependent QT interval prolongation. Concurrent use of citalopram and medications known to cause electrolyte imbalance may increase the risk of developing QT prolongation. Therefore, caution is advisable during concurrent use of citalopram and diuretics. In addition, patients receiving a diuretic during treatment with citalopram may be at greater risk of developing syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH has been reported during therapy with SSRIs. Cases involving serum sodium levels lower than 110 mmol/l have occurred. Hyponatremia may be potentiated by agents which can cause sodium depletion such as diuretics. Discontinuation of citalopram should be considered in patients who develop symptomatic hyponatremia.
    Clarithromycin: (Major) Avoid coadministration of clarithromycin and amlodipine, particularly in geriatric patients, due to an increased risk of hypotension and acute kidney injury. If the use of a macrolide antibiotic is necessary in a patient receiving amlodipine therapy, azithromycin is the preferred agent. If coadministration is unavoidable, monitor for symptoms of hypotension and edema; adjust the dose of amlodipine as clinically appropriate. Amlodipine is a CYP3A4 substrate and clarithromycin is a strong CYP3A4 inhibitor. A retrospective, case crossover study, found the risk of hospitalization due to hypotension or shock to be significantly increased in geriatric patients exposed to clarithromycin during concurrent calcium-channel blocker therapy (OR 3.7, 95% CI 2.3-6.1). Concurrent use of azithromycin was not associated with an increased risk of hypotension (OR 1.5, 95% CI 0.8-2.8).
    Clindamycin; Tretinoin: (Moderate) A manufacturer of topical tretinoin states that tretinoin, ATRA should be administered with caution in patients who are also taking drugs known to be photosensitizers, such as thiazide diuretics, as concomitant use may augment phototoxicity. Patients should take care and use proper techniques to limit sunlight and UV exposure of treated areas.
    Clobazam: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as clobazam, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
    Clofarabine: (Moderate) Concomitant use of clofarabine, a substrate of OAT1 and OAT3, and valsartan, an inhibitor of OAT protein (OATP), may result in increased clofarabine levels. Therefore, monitor for signs of clofarabine toxicity such as gastrointestinal toxicity (e.g., nausea, vomiting, diarrhea, mucosal inflammation), hematologic toxicity, and skin toxicity (e.g. hand and foot syndrome, rash, pruritus) in patients also receiving valsartan.
    Clopidogrel: (Moderate) Monitor for reduced therapeutic response to clopidogrel when it is coadministered with amlodipine. Although clopidogrel is primarily converted to its active metabolite via CYP2C19, it has been suggested that calcium channel blocker (CCB)-induced inhibition of CYP3A4 reduces its conversion to the active metabolite, thereby reducing its antiplatelet effect. Because amlodipine has represented the largest subgroup of CCB studied, it is unknown whether this is a class effect. It has been theorized that CCBs that inhibit P-glycoprotein (P-gp) decrease the intestinal efflux of clopidogrel, thereby increasing its plasma concentrations and counteracting the effect of CCB-induced CYP3A4 inhibition. Amlodipine is not a P-gp inhibitor.
    Clozapine: (Moderate) Caution is advisable during concurrent use of clozapine and thiazide diuretics as concurrent use may increase the risk and severity of hypotension. In addition, electrolyte imbalance caused by thiazide diuretics may increase the risk of QT prolongation by clozapine. (Moderate) Clozapine used concomitantly with the antihypertensive agents can increase the risk and severity of hypotension by potentiating the effect of the antihypertensive drug. (Moderate) Clozapine used concomitantly with the antihypertensive agents can increase the risk and severity of hypotension by potentiating the effect of the antihypertensive drug.
    Cobicistat: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with cobicistat is necessary; adjust the dose of amlodipine as clinically appropriate. Cobicistat is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent. (Minor) Caution is warranted when cobicistat is administered with valsartan as there is a potential for increased valsartan concentrations. Valsartan is a substrate of organic anion transporting polypeptide (OATP)1B1. Cobicistat is an inhibitor of OATP.
    Cocaine: (Major) Use of cocaine with antihypertensive agents may increase the antihypertensive effects of the antihypertensive medications or may potentiate cocaine-induced sympathetic stimulation. (Major) Use of cocaine with antihypertensive agents may increase the antihypertensive effects of the antihypertensive medications or may potentiate cocaine-induced sympathetic stimulation.
    Codeine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a thiazide diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Codeine; Guaifenesin: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a thiazide diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Codeine; Phenylephrine; Promethazine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a thiazide diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Codeine; Promethazine: (Moderate) Monitor for an increase in codeine-related adverse reactions including sedation and respiratory depression if coadministration with amlodipine is necessary; adjust the dose of codeine if necessary. Codeine is primarily metabolized by CYP2D6 to morphine, and by CYP3A4 to norcodeine; norcodeine does not have analgesic properties. Amlodipine is a weak CYP3A4 inhibitor. Concomitant use may result in an increase in codeine plasma concentrations, resulting in greater metabolism by CYP2D6 and increased morphine concentrations. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when a thiazide diuretic is administered with codeine. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Co-Enzyme Q10, Ubiquinone: (Moderate) Co-enzyme Q10, ubiquinone (CoQ10) may lower blood pressure. CoQ10 use in combination with antihypertensive agents may lead to additional reductions in blood pressure in some individuals. Patients who choose to take CoQ10 concurrently with antihypertensive medications should receive periodic blood pressure monitoring. Patients should be advised to inform their prescriber of their use of CoQ10.
    Colchicine: (Moderate) Monitor for an increase in colchicine-related adverse reactions including neuromuscular toxicity and other serious toxicities if coadministration with amlodipine is necessary, especially in patients with renal or hepatic impairment. Amlodipine is a weak inhibitor of CYP3A while colchicine is a CYP3A4 substrate with a narrow therapeutic index.
    Colchicine; Probenecid: (Moderate) Monitor for an increase in colchicine-related adverse reactions including neuromuscular toxicity and other serious toxicities if coadministration with amlodipine is necessary, especially in patients with renal or hepatic impairment. Amlodipine is a weak inhibitor of CYP3A while colchicine is a CYP3A4 substrate with a narrow therapeutic index. (Moderate) Thiazide diuretics can cause hyperuricemia. Although this effect represents a pharmacodynamic interaction and not a pharmacokinetic one, dosage adjustments of probenecid may be necessary if these agents are administered concurrently to patients being treated with probenecid.
    Colestipol: (Moderate) Although to a lesser extent than cholestyramine, colestipol also has been shown to inhibit the GI absorption and therapeutic response of thiazide diuretics. Single doses of colestipol resins reduce the absorption of HCTZ by up to 43%. Administering thiazide diuretics at least 2 hours before colestipol has been suggested to minimize the interaction.
    Conivaptan: (Major) Avoid concomitant use of conivaptan, a strong CYP3A4 inhibitor, and amlodipine, a CYP3A4 substrate. Oral conivaptan 40 mg twice daily has resulted in a 2-fold increase in the AUC and half-life of amlodipine. According to the manufacturer of conivaptan, concomitant use of conivaptan with drugs that are primarily metabolized by CYP3A4, such as amlodipine, should be avoided. Subsequent treatment with CYP3A substrates may be initiated no sooner than 1 week after completion of conivaptan therapy. Based on the pharmacology of conivaptan, there is potential for additive hypotensive effects when coadministered with calcium-channel blockers. Intravenous infusion of conivaptan has been associated with orthostatic hypotension. Monitor blood pressure and fluid volume status closely in patients receiving conivaptan infusion. (Moderate) There is potential for additive hypotensive effects when conivaptan is coadministered with antihypertensive agents. (Moderate) There is potential for additive hypotensive effects when conivaptan is coadministered with antihypertensive agents.
    Corticosteroids: (Moderate) Additive hypokalemia may occur when non-potassium sparing diuretics, including thiazide diuretics, are coadministered with other drugs with a significant risk of hypokalemia, such as corticosteroids. Monitoring serum potassium levels and cardiac function is advised, and potassium supplementation may be required.
    Cosyntropin: (Moderate) Use cosyntropin cautiously in patients receiving diuretics. Cosyntropin may accentuate the electrolyte loss associated with diuretic therapy.
    Crizotinib: (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with crizotinib is necessary; adjust the dose of amlodipine as clinically appropriate. Crizotinib is a moderate CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. However, coadministration with another moderate CYP3A4 inhibitor in healthy volunteers did not significantly change amlodipine exposure.
    Cyclophosphamide: (Moderate) Coadministration of thiazide diuretics and antineoplastic agents such as cyclophosphamide may result in reduced renal excretion of the antineoplastic agent and therefore increased myelosuppressive effects.
    Cyclosporine: (Moderate) Caution should be used when cyclosporine is coadministered with amlodipine; therapeutic response should be monitored, including cyclosporine levels as necessary. Amlodipine may increase cyclosporine concentrations. In one study, whole blood cyclosporine trough concentrations increased from 140.2 +/- 18.2 to 200 +/- 21.9 mcg/L after amlodipine addition. In another study, the systemic exposure (AUC) of cyclosporine increased following the addition of amlodipine, and was decreased in the absence of the drug. The postulated mechanism is the inhibitory effect of amlodipine on the P-glycoprotein-mediated efflux of cyclosporine from intestinal epithelial cells. In addition, amlodipine is a weak inhibitor of CYP3A4; cyclosporine is a substrate with a narrow therapeutic index. Also, amlodipine is a CYP3A4 substrate and theoretically, cyclosporine, may increase the plasma concentration of amlodipine via CYP3A4 inhibition; this effect might lead to hypotension in some individuals. (Moderate) Coadministration of cyclosporine and an angiotensin II receptor antagonist, like valsartan, may increase the risk of hyperkalemia and reduced renal function. In response to cyclosporine-induced renal afferent vasoconstriction and glomerular hypoperfusion, angiotensin II is required to maintain an adequate glomerular filtration rate. Inhibition of angiotensin-converting enzyme (ACE) could reduce renal function acutely. Several cases of acute renal failure have been associated with the addition of enalapril to cyclosporine therapy in renal transplant patients. Also, cyclosporine can cause hyperkalemia, and inhibition of angiotensin II leads to reduced aldosterone concentrations, which can increase the serum potassium concentration. Closely monitor renal function and serum potassium concentrations in patients receiving cyclosporine concurrently with valsartan. Additionally, valsartan is a substrate of the hepatic uptake transporter OATP1B1 and cyclosporine is an inhibitor of OATP. Coadministration may increase systemic exposure to valsartan. Patients should be monitored for adverse effects of valsartan.
    Dabrafenib: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as dabrafenib, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
    Daclatasvir: (Moderate) Systemic exposure of valsartan, a substrate of the drug transporter organic anion transporting polypeptides (OATP), may be increased when administered concurrently with daclatasvir, an OATP inhibitor. Taking these drugs together could increase or prolong the therapeutic effects of valsartan; monitor patients for potential adverse effects.
    Danazol: (Moderate) Coadministration of CYP3A4 inhibitors with amlodipine can theoretically decrease the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inhibitors, such as danazol , are coadministered with calcium-channel blockers. Monitor therapeutic response; a dose reduction of amlodipine may be required.
    Dantrolene: (Moderate) Concurrent use with skeletal muscle relaxants and antihypertensive agents may result in additive hypotension. Dosage adjustments of the antihypertensive medication may be required.
    Dapagliflozin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Dapagliflozin; Metformin: (Moderate) Angiotensin II receptor antagonists (ARBs) may enhance the hypoglycemic effects of metformin by improving insulin sensitivity. In addition, angiotensin II receptor antagonists have been associated with a reduced incidence in the development of new-onset diabetes in patients with hypertension or other cardiac disease. ARBs may rarely reduce renal function, a risk factor for reduced renal clearance of metformin. Patients receiving these drugs together should be monitored for changes in renal function and glycemic control. (Moderate) Certain drugs, such as thiazide diuretics, tend to produce hyperglycemia and may lead to loss of glycemic control. The effects of thiazide diuretics on glycemic control appear to be dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, thiazide diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. Patients receiving metformin should be monitored for changes in blood glucose control if any of these diuretics are added or deleted. Dosage adjustments may be necessary in some patients. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary.
    Dapagliflozin; Saxagliptin: (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. (Moderate) Thiazide diuretics can decrease insulin sensitivity thereby leading to glucose intolerance and hyperglycemia. Diuretic-induced hypokalemia may also lead to hyperglycemia. Because of this, a potential pharmacodynamic interaction exists between thiazide diuretics and antidiabetic agents. It appears that the effects of thiazide diuretics on glycemic control are dose-related and low doses can be instituted without deleterious effects on glycemic control. In addition, diuretics reduce the risk of stroke and cardiovascular disease in patients with diabetes. However, patients taking antidiabetic agents should be monitored for changes in blood glucose control if such diuretics are added or deleted. Dosage adjustments may be necessary. Finally, both thiazides and sulfonylureas have been reported to cause photosensitivity reactions; concomitant use may increase the risk of photosensitivity.
    Darunavir: (Moderate) Amlodipine is a CYP3A4 substrate. Theoretically, CYP3A4 inhibitors, such as anti-retroviral protease inhibitors, may increase the plasma concentration of amlodipine via CYP3A4 inhibition; this effect might lead to hypotension in some individuals. Caution should be used when anti-retroviral protease inhibitors are coadministered with amlodipine; therapeutic response should be monitored. Ritonavir also prolongs the PR interval in some patients; however, the impact on the PR interval of coadministration of ritonavir with other drugs that prolong the PR interval (including calcium channel blockers) has not been evaluated. If coadministration of these drugs is warranted, do so with caution and careful monitoring. Decreased calcium-channel blocker doses may be warranted.
    Darunavir; Cobicistat: (Moderate) Amlodipine is a CYP3A4 substrate. Theoretically, CYP3A4 inhibitors, such as anti-retroviral protease inhibitors, may increase the plasma concentration of amlodipine via CYP3A4 inhibition; this effect might lead to hypotension in some individuals. Caution should be used when anti-retroviral protease inhibitors are coadministered with amlodipine; therapeutic response should be monitored. Ritonavir also prolongs the PR interval in some patients; however, the impact on the PR interval of coadministration of ritonavir with other drugs that prolong the PR interval (including calcium channel blockers) has not been evaluated. If coadministration of these drugs is warranted, do so with caution and careful monitoring. Decreased calcium-channel blocker doses may be warranted. (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with cobicistat is necessary; adjust the dose of amlodipine as clinically appropriate. Cobicistat is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent. (Minor) Caution is warranted when cobicistat is administered with valsartan as there is a potential for increased valsartan concentrations. Valsartan is a substrate of organic anion transporting polypeptide (OATP)1B1. Cobicistat is an inhibitor of OATP.
    Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Amlodipine is a CYP3A4 substrate. Theoretically, CYP3A4 inhibitors, such as anti-retroviral protease inhibitors, may increase the plasma concentration of amlodipine via CYP3A4 inhibition; this effect might lead to hypotension in some individuals. Caution should be used when anti-retroviral protease inhibitors are coadministered with amlodipine; therapeutic response should be monitored. Ritonavir also prolongs the PR interval in some patients; however, the impact on the PR interval of coadministration of ritonavir with other drugs that prolong the PR interval (including calcium channel blockers) has not been evaluated. If coadministration of these drugs is warranted, do so with caution and careful monitoring. Decreased calcium-channel blocker doses may be warranted. (Moderate) Monitor for symptoms of hypotension and edema if coadministration of amlodipine with cobicistat is necessary; adjust the dose of amlodipine as clinically appropriate. Cobicistat is a strong CYP3A inhibitor and amlodipine is a CYP3A substrate. Coadministration with a moderate CYP3A4 inhibitor in elderly hypertensive patients increased systemic exposure to amlodipine by 60%. Strong CYP3A4 inhibitors may increase the plasma concentrations of amlodipine to a greater extent. (Minor) Caution is warranted when cobicistat is administered with valsartan as there is a potential for increased valsartan concentrations. Valsartan is a substrate of organic anion transporting polypeptide (OATP)1B1. Cobicistat is an inhibitor of OATP.
    Dasabuvir; Ombitasvir; Paritaprevir; Ritonavir: (Moderate) Amlodipine is a CYP3A4 substrate. Theoretically, CYP3A4 inhibitors, such as anti-retroviral protease inhibitors, may increase the plasma concentration of amlodipine via CYP3A4 inhibition; this effect might lead to hypotension in some individuals. Caution should be used when anti-retroviral protease inhibitors are coadministered with amlodipine; therapeutic response should be monitored. Ritonavir also prolongs the PR interval in some patients; however, the impact on the PR interval of coadministration of ritonavir with other drugs that prolong the PR interval (including calcium channel blockers) has not been evaluated. If coadministration of these drugs is warranted, do so with caution and careful monitoring. Decreased calcium-channel blocker doses may be warranted. (Moderate) Coadministration of valsartan and regimens containing paritaprevir may result in elevated valsartan plasma concentrations. A valsartan dose reduction, and close monitoring for adverse events (i.e., hypotension and worsening renal function) are advised during coadministration. If adverse events are observed, consider further reductions in valsartan dose or an alternative to the angiotensin receptor blocker. Valsartan is a substrate of the organic anion transporting polypeptides (OATP) and paritaprevir is an OATP1B1 and OATP1B3 inhibitor. (Minor) Valsartan is a substrate of the hepatic efflux transporter MRP2 and ritonavir is an inhibitor of MRP2. Coadministration may increase systemic exposure to valsartan. Patients should be monitored for adverse effects of valsartan during coadministration.
    Deferasirox: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as deferasirox, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
    Delavirdine: (Moderate) Administering amlodipine with CYP3A4 inhibitors, such as delavirdine, may increase the plasma concentration of amlodipine; this effect might lead to hypotension in some individuals. Caution should be used when delavirdine is coadministered with amlodipine; therapeutic response should be monitored.
    Desloratadine; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Desvenlafaxine: (Moderate) Patients receiving a diuretic during treatment with a Serotonin norepinephrine reuptake inhibitor (SNRI) may be at greater risk of developing hyponatremia and/or the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Hyponatremia due to SIADH may occur during therapy with SNRIs. Cases involving serum sodium levels lower than 110 mmol/L have been reported. Discontinuation of the SNRI should be considered in patients who develop symptomatic hyponatremia.
    Dexamethasone: (Minor) Coadministration of CYP3A4 inducers with amlodipine can theoretically increase the hepatic metabolism of amlodipine (a CYP3A4 substrate). Caution should be used when CYP3A4 inducers, such as dexamethasone, are coadministered with amlodipine. Monitor therapeutic response; the dosage requirements of amlodipine may be increased.
    Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Dexlansoprazole: (Moderate) Proton pump inhibitors have been associated with hypomagnesemia. Hypomagnesemia occurs with thiazide diuretics (chlorothiazide, hydrochlorothiazide, indapamide, and metolazone). Low serum magnesium may lead to serious adverse events such as muscle spasm, seizures, and arrhythmias. Therefore, clinicians should monitor serum magnesium concentrations periodically in patients taking a PPI and diuretics concomitantly. Patients who develop hypomagnesemia may require PPI discontinuation in addition to magnesium replacement.
    Dexmedetomidine: (Moderate) Concomitant administration of dexmedetomidine and calcium-channel blockers could lead to additive hypotension and bradycardia; use together with caution. Dexmedetomidine can produce bradycardia or AV block and should be used cautiously in patients who are receiving antihypertensive drugs that may lower the heart rate such as calcium-channel blockers.
    Dexmethylphenidate: (Moderate) Dexmethylphenidate can reduce the hypotensive effect of antihypertensive agents, including angiotensin II receptor antagonists. Periodic evaluation of blood pressure is advisable during concurrent use of dexmethylphenidate and antihypertensive agents, particularly during initial coadministration and after dosage increases of dexmethylphenidate. (Moderate) Dexmethylphenidate can reduce the hypotensive effect of antihypertensive agents, including calcium-channel blockers. Periodic evaluation of blood pressure is advisable during concurrent use of dexmethylphenidate and antihypertensive agents, particularly during initial coadministration and after dosage increases of dexmethylphenidate. (Moderate) Dexmethylphenidate can reduce the hypotensive effect of antihypertensive agents, including thiazide diuretics. Periodic evaluation of blood pressure is advisable during concurrent use of dexmethylphenidate and antihypertensive agents, particularly during initial coadministration and after dosage increases of dexmethylphenidate.
    Dextromethorphan; Diphenhydramine; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Dextromethorphan; Guaifenesin; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Dextromethorphan; Guaifenesin; Pseudoephedrine: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Dextromethorphan; Quinidine: (Moderate) Monitor for increased quinidine adverse reactions if coadministered with amlodipine. Taking these drugs together may increase quinidine plasma concentrations, potentially resulting in adverse events. Amlodipine is a weak CYP3A4 inhibitor; quinidine is a substrate of CYP3A4 with a narrow therapeutic index. In addition, quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension. (Moderate) Quinidine can decrease blood pressure and should be used cautiously in patients receiving antihypertensive agents due to the potential for additive hypotension.
    Diazoxide: (Moderate) Additive hypotensive effects can occur with the concomitant administration of diazoxide with other antihypertensive agents. This interaction can be therapeutically advantageous, but dosages must be adjusted accordingly. The manufacturer advises that IV diazoxide should not be administered to patients within 6 hours of receiving beta-blockers, hydralazine, methyldopa, minoxidil, nitrites, prazosin, reserpine, or other antihypertensive agents. (Moderate) Additive hypotensive effects can occur with the concomitant administration of diazoxide with other antihypertensive agents. This interaction can be therapeutically advantageous, but dosages must be adjusted accordingly. The manufacturer advises that IV diazoxide should not be administered to patients within 6 hours of receiving other antihypertensive agents. (Moderate) Enhanced hyperglycemia is possible during concurrent use of diazoxide and thiazide diuretics. Additive hypotensive effects can also occur with the concomitant administration of diazoxide with thiazide diuretics.
    Dichlorphenamide: (Moderate) Use dichlorphenamide and diuretics together with caution. Dichlorphenamide increases potassium excretion and can cause hypokalemia and should be used cautiously with other drugs that may cause hypokalemia including loop diuretics and thiazide diuretics. Measure potassium concentrations at baseline and periodically during dichlorphenamide treatment. If hypokalemia occurs or persists, consider reducing the dose or discontinuing dichlorphenamide therapy.
    Diclofenac: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Diclofenac; Misoprostol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Dicyclomine: (Minor) Coadministration of thiazides and antimuscarinics (e.g., atropine and biperiden) may result in increased bioavailability of the thiazide. This is apparently a result of a decrease in gastrointestinal motility and rate of stomach emptying by the antimuscarinic agent. In addition, diuretics can increase urinary frequency, which may aggravate bladder symptoms.
    Diethylpropion: (Major) Diethylpropion has vasopressor effects and may limit the benefit of calcium-channel blockers. Although leading drug interaction texts differ in the potential for an interaction between diethylpropion and this group of antihypertensive agents, these effects are likely to be clinically significant and have been described in hypertensive patients on these medications. (Major) Diethylpropion has vasopressor effects and may limit the benefit of thiazide diuretics. Although leading drug interaction texts differ in the potential for an interaction between diethylpropion and this group of antihypertensive agents, these effects are likely to be clinically significant and have been described in hypertensive patients on these medications. (Moderate) Diethylpropion has vasopressor effects and may limit the benefit of angiotensin II receptor antagonists. Although leading drug interaction texts differ in the potential for an interaction between diethylpropion and this group of antihypertensive agents, these effects are likely to be clinically significant and have been described in hypertensive patients on these medications.
    Diflunisal: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Digitoxin: (Moderate) Thiazide diuretics can cause hypokalemia, hypomagnesemia, or hypercalcemia which may increase digoxin's pharmacologic effect. Close monitoring of serum digoxin concentrations is essential to avoid enhanced toxicity. It is also recommended that serum potassium, magnesium, and calcium be monitored regularly in patients receiving digoxin.
    Digoxin: (Moderate) Caution should be exercised when administering digoxin with drugs that may cause a significant deterioration in renal function including angiotensin II receptor antagonists. A decline in glomerular filtration or tubular secretion may impair the excretion of digoxin. Close monitoring of serum digoxin concentrations is essential to avoid enhanced toxicity. (Moderate) Thiazide diuretics can cause hypokalemia, hypomagnesemia, or hypercalcemia which may increase digoxin's pharmacologic effect. Close monitoring of serum digoxin concentrations is essential to avoid enhanced toxicity. It is also recommended that serum potassium, magnesium, and calcium be monitored regularly in patients receiving digoxin.
    Dihydrocodeine; Guaifenesin; Pseudoephedrine: (Moderate) Concomitant use of dihydrocodeine with amlodipine may increase dihydrocodeine plasma concentrations, resulting in greater metabolism by CYP2D6, increased dihydromorphine concentrations, and prolonged opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of dihydrocodeine until stable drug effects are achieved. Discontinuation of amlodipine could decrease dihydrocodeine plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to dihydrocodeine. If amlodipine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Amlodipine is a weak inhibitor of CYP3A4, an isoenzyme partially responsible for the metabolism of dihydrocodeine. (Moderate) Opiate agonists may potentiate orthostatic hypotension when used concurrently with thiazide diuretics. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
    Dihydroergotamine: (Moderate) Be alert for symptoms of ergot toxicity if using dihydroergotamine and amlodipine together is medically necessary. An ergot alkaloid dose reduction may be necessary if these drugs are used together. Concomitant use of amlodipine, a CYP3A4 inhibitor, and dihydroergotamine, a CYP3A4 substrate with a narrow therapeutic range, may result in increased ergot alkaloid levels.
    Diltiazem: (Moderate) Amlodipine is a CYP3A4 substrate; coadministration of diltiazem 180 mg/day PO (CYP3A4 inhibitor) with amlodipine 5 mg/day PO in elderly hypertensive patients resulted in a 60% increase in amlodipine systemic exposure. This effect might lead to hypotension or edema in some individuals. Caution should be used when diltiazem is coadministered with amlodipine; therapeutic response should be monitored.
    Diphenhydramine; Hydrocodone; Phenylephrine: (Moderate) Monitor for an increase in hydrocodone-related adverse reactions, including sedation and respiratory depression, if coadministration with amlodipine is necessary; consider reducing the dose of hydrocodone if clinically appropriate. If amlodipine is discontinued, monitor for evidence of opioid withdrawal until stable drug effects are achieved and consider increasing the hydrocodone dose if necessary. Hydrocodone is a CYP3A4 substrate, and coadministration with weak CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. If amlodipine is discontinued, hydrocodone plasma concentrations may decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
    Diphenhydramine; Ibuprofen: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Diphenhydramine; Naproxen: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
    Diphenhydramine; Phenylephrine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympa