PDR MEMBER LOGIN:
  • PDR Search

    Required field
  • Advertisement
  • CLASSES

    Antihistamine and Opioid Antitussive Combinations

    BOXED WARNING

    Alcoholism, depression, substance abuse

    Hydrocodone is an opioid agonist and therefore has abuse potential and a risk for fatal overdose from depressed respiration. Consumption of hydrocodone with ethanol will result in additive central nervous system (CNS) and respiratory depressant effects. Patients with alcoholism should be advised of this serious risk, or an alternative medication should be used. Addiction may occur in patients who obtain hydrocodone illicitly or in those appropriately prescribed the drug. The risk of addiction in any individual is unknown. Patients with an individual or family history of substance abuse (including alcoholism) or mental illness (e.g., major depression) have an increased risk of opioid abuse. Assess patients for risks of addiction, abuse, or misuse before drug initiation, and monitor patients who receive opioids routinely for development of these behaviors or conditions. Abuse and addiction are separate and distinct from physical dependence and tolerance; patients with addiction may not exhibit tolerance and symptoms of physical dependence. To discourage abuse, reserve chlorpheniramine; hydrocodone for use in adult patients for whom the benefits of cough suppression are expected to outweigh the risks, and in whom an adequate assessment of the etiology of the cough has been made. Prescribe the smallest appropriate quantity for the shortest duration that is consistent with individual treatment goals. Proper disposal instructions for unused drug should be given to patients; refill only after reevaluation of the need for continued treatment.

    Asthma, chronic obstructive pulmonary disease (COPD), coadministration with other CNS depressants, coma, cor pulmonale, hypoxemia, neuromuscular disease, obesity, pulmonary disease, respiratory depression, respiratory insufficiency, scoliosis, sleep apnea, status asthmaticus

    Chlorpheniramine; hydrocodone is contraindicated for use in patients with significant respiratory depression and in patients with acute or severe asthma (e.g., status asthmaticus) in unmonitored care settings or in the absence of resuscitative equipment. Receipt of moderate hydrocodone doses in these patients may significantly decrease pulmonary ventilation. Additionally, avoid coadministration with other CNS depressants when possible, as this significantly increases the risk for profound sedation, respiratory depression, coma, and death. Opioid analgesics and antitussives, including hydrocodone should not be used in patients with acute febrile illness associated with productive cough or in patients with chronic respiratory disease where interference with ability to clear the tracheobronchial tree of secretions would have a deleterious effect on the patient’s respiratory function. In patients with chronic obstructive pulmonary disease (COPD), cor pulmonale, decreased respiratory reserve, hypoxia, hypercapnia, respiratory insufficiency, upper airway obstruction, neuromuscular disease, or preexisting respiratory depression, it is recommended that non-opioid antitussives be considered as alternatives to hydrocodone, as even usual therapeutic doses of hydrocodone may decrease respiratory drive and cause apnea in these patient populations. Extreme caution should also be used in patients with chronic asthma, kyphoscoliosis (a type of scoliosis), hypoxemia, or paralysis of the phrenic nerve. Patients with advanced age, debilitation, or sleep apnea are at an increased risk for the development of respiratory depression associated with hydrocodone. Use with caution in patients with obesity as this is a risk factor for obstructive sleep-apnea syndrome and/or decreased respiratory reserve. Respiratory depression, if left untreated, may cause respiratory arrest and death. Symptoms of respiratory depression include a reduced urge to breathe, a decreased respiratory rate, or deep breaths separated by long pauses (a 'sighing' breathing pattern). Carbon dioxide retention from respiratory depression may also worsen opioid sedating effects. Concomitant use of chlorpheniramine; hydrocodone with CYP3A4 inhibitors or inducers, or CYP2D6 inhibitors should be avoided; concurrent use of a CYP3A4 or CYP2D6 inhibitor or discontinuation of a concurrently used CYP3A4 inducer may increase plasma hydrocodone concentrations and potentiate the risk of fatal respiratory depression. To reduce the risk of respiratory depression, proper dosing of chlorpheniramine; hydrocodone is essential. Monitor patients closely, especially within the first 24 to 72 hours of initiating therapy or when used in patients at higher risk. An unresponsive cough should be reevaluated in 5 days or sooner for possible underlying pathology, such as foreign body or lower respiratory tract disease. Management of respiratory depression should include observation, necessary supportive measures, and opioid antagonist use when indicated.

    Accidental exposure, ethanol ingestion, ethanol intoxication, potential for overdose or poisoning

    Like all opioid analgesics, hydrocodone is associated with a significant potential for overdose or poisoning; proper patient selection and counseling is recommended. Ensure accuracy when prescribing, dispensing, and administering chlorpheniramine; hydrocodone cough products as dosing errors can result in accidental overdose and death. Chlorpheniramine; hydrocodone should be kept out of the reach of pediatric patients, others for whom the drug was not prescribed, and pets, as accidental exposure of even 1 dose of hydrocodone may cause respiratory failure and a fatal overdose. Ethanol ingestion with these products may result in increased plasma levels and a potentially fatal overdose of hydrocodone. Consumption of hydrocodone with ethanol will also result in additive CNS depressant effects and increase the risk for respiratory depression; ethanol intoxication must be avoided. Advise patients to avoid alcohol ingestion, including the ingestion of alcohol contained in prescription or non-prescription medications, during therapy.

    Labor, neonatal opioid withdrawal syndrome, obstetric delivery, pregnancy

    There are no data or data are insufficient to inform a drug-associated risk for major birth defects or miscarriage with chlorpheniramine; hydrocodone use as an antitussive in human pregnancy. In animal studies, hydrocodone administered to pregnant rats during organogenesis, gestation, or lactation resulted in decreased body weight of offspring, reduced nursing behavior, increased post-implantation loss, and non-viable litters at doses approximately 2- to 3-fold human hydrocodone doses of 100 to 180 mg/day; decreases in survival were seen in the offspring of rats given hydrocodone during gestation and lactation at doses equivalent to a human dose of 180 mg/day and above. Fetal malformations including increases in umbilical hernias, irregularly shaped bones, and delays in fetal skeletal maturation occurred with doses equivalent to 15 times an adult human dose of 100 mg/day. Chlorpheniramine; hydrocodone is not recommended for use in women during and immediately prior to labor and obstetric delivery because oral opioid agonists may cause respiratory depression in the newborn. Opioid analgesics can prolong labor by reducing the strength and frequency of uterine contractions; however, this effect may be offset by an increased rate of cervical dilation. Further, prolonged maternal use of long-acting opioids, such as hydrocodone, during pregnancy may result in neonatal opioid withdrawal syndrome (NOWS). This syndrome can be life-threatening. Severe symptoms may require pharmacologic therapy managed by clinicians familiar with neonatal opioid withdrawal. Monitor the neonate for withdrawal symptoms including irritability, hyperactivity, abnormal sleep pattern, high-pitched crying, tremor, vomiting, diarrhea, and failure to gain weight. Onset, duration, and severity of opioid withdrawal may vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination by the newborn.

    DEA CLASS

    Rx, schedule II

    DESCRIPTION

    Combined oral antihistamine and semisynthetic opiate agonist antitussive
    Used to relieve cough and upper respiratory symptoms associated with allergic rhinitis or the common cold in adults
    Not indicated in pediatric patients under 18 years of age; contraindicated in neonates, infants and children less than 6 years of age

    COMMON BRAND NAMES

    TussiCaps, Tussionex

    HOW SUPPLIED

    Chlorpheniramine Polistirex, Hydrocodone Polistirex/Chlorpheniramine, Hydrocodone Polistirex/Tussionex Oral Susp ER: 5mL, 8-10mg
    TussiCaps Oral Cap ER: 4-5mg, 8-10mg

    DOSAGE & INDICATIONS

    For the relief of cough and upper respiratory symptoms associated with allergic rhinitis or the common cold.
    Oral dosage (extended-release capsules of hydrocodone polistirex; chlorpheniramine polistirex, e.g., TussiCaps)
    Adults

    1 full-strength ER capsule PO every 12 hours. Do not give more frequently. Max: 1 capsule every 12 hours or 2 capsules/24 hours. Each full-strength ER capsule contains hydrocodone polistirex equivalent to 10 mg of hydrocodone bitartrate and chlorpheniramine polistirex equivalent to 8 mg of chlorpheniramine maleate. LIMITATION OF USE: Reserve chlorpheniramine; hydrocodone for use in adult patients for whom the benefits of cough suppression are expected to outweigh the risks, and in whom an adequate assessment of the etiology of the cough has been made. Prescribe for the shortest duration consistent with individual patient treatment goals. Monitor patients closely for respiratory depression, especially within the first 24 to 72 hours of initiating therapy; proper dosing is essential to reduce the risk of respiratory depression. Reevaluate patients with unresponsive cough in 5 days or sooner for possible underlying pathology, such as foreign body or lower respiratory tract disease. CONTINUED TREATMENT: If a patient requires a refill, reevaluate the cause of the cough and the need for continued treatment. DISCONTINUATION: Do not abruptly discontinue this product in a physically-dependent patient; taper the dose gradually, by 25% to 50% every 2 to 4 days, while monitoring carefully for signs and symptoms of withdrawal. If withdrawal occurs, raise the dose to the previous level and taper more slowly, either by increasing the interval between decreases, decreasing the amount of change in dose, or both.

    Oral dosage (extended-release suspension of hydrocodone polistirex; chlorpheniramine polistirex; e.g., Tussionex Pennkinetic)
    Adults

    5 mL PO every 12 hours as needed. Do not give more frequently. Max: 5 mL per 12 hours or 10 mL/24 hours. Each 5 mL contains hydrocodone polistirex, which contains 6.66 mg of hydrocodone (equivalent to 10 mg of hydrocodone bitartrate); and chlorpheniramine polistirex, which contains 5.62 mg of chlorpheniramine (equivalent to 8 mg of chlorpheniramine maleate). LIMITATION OF USE: Reserve chlorpheniramine; hydrocodone for use in adult patients for whom the benefits of cough suppression are expected to outweigh the risks, and in whom an adequate assessment of the etiology of the cough has been made. Prescribe for the shortest duration consistent with individual patient treatment goals. Monitor patients closely for respiratory depression, especially within the first 24 to 72 hours of initiating therapy; proper dosing is essential to reduce the risk of respiratory depression. Reevaluate patients with unresponsive cough in 5 days or sooner for possible underlying pathology, such as foreign body or lower respiratory tract disease. CONTINUED TREATMENT: If a patient requires a refill, reevaluate the cause of the cough and the need for continued treatment. DISCONTINUATION: Do not abruptly discontinue this product in a physically-dependent patient; taper the dose gradually, by 25% to 50% every 2 to 4 days, while monitoring carefully for signs and symptoms of withdrawal. If withdrawal occurs, raise the dose to the previous level and taper more slowly, either by increasing the interval between decreases, decreasing the amount of change in dose, or both.

    MAXIMUM DOSAGE

    Adults

    10 mL extended-release suspension/24 hours PO or 2 full-strength ER capsules/24 hours PO; polistirex dose forms provide the equivalent to hydrocodone bitartrate 20 mg/day PO; chlorpheniramine maleate 16 mg/day PO.

    Geriatric

    10 mL extended-release suspension/24 hours PO or 2 full-strength ER capsules/24 hours PO; polistirex dose forms provide the equivalent to hydrocodone bitartrate 20 mg/day PO; chlorpheniramine maleate 16 mg/day PO.

    Adolescents

    Safety and efficacy have not been established.

    Children

    6 years and older: Safety and efficacy have not been established.
    Less than 6 years: Use is contraindicated.

    Infants

    Use is contraindicated.

    DOSING CONSIDERATIONS

    Hepatic Impairment

    Specific dose adjustment recommendations are not available; decreased elimination of both drugs is expected. Use with caution in patients with severe hepatic impairment, and monitor closely for signs of hydrocodone toxicity (respiratory depression, sedation, and hypotension) and chlorpheniramine toxicity. Based on recommendations for some analgesic products containing hydrocodone, consider an initial reduction in hydrocodone dosage of 50% for patients with hepatic impairment.

    Renal Impairment

    Specific dose adjustment recommendations are not available; however, deceased elimination of both drugs is expected. Use with caution in patients with moderate to severe renal impairment, and monitor closely for signs of hydrocodone toxicity (respiratory depression, sedation, and hypotension) and chlorpheniramine toxicity. Based on recommendations for some analgesic products containing hydrocodone, consider an initial reduction in hydrocodone dosage of 50% for patients with moderate to severe renal impairment.

    ADMINISTRATION

    Oral Administration

    Administer orally with a full glass of water. May be taken with food or milk to minimize GI irritation.
    Do not administer more frequently than directed as severe, possibly fatal, respiratory depression may occur. An unresponsive cough should be reevaluated in 5 days or sooner for possible underlying pathology, such as foreign body or lower respiratory tract disease.

    Oral Solid Formulations

    Extended-release capsules (e.g., Tussicaps)
    Swallow whole. Do not cut, crush or chew.

    Oral Liquid Formulations

    Extended-release oral suspension (e.g., Tussionex Pennkinetic)
    Shake the suspension well before each use.
    Advise patients/caregivers to use a calibrated spoon or other measuring device. Do not to overfill.
    Rinse the measuring device with water after each use.

    STORAGE

    HyTan :
    - Store at room temperature (between 59 to 86 degrees F)
    Novasus:
    - Store at room temperature (between 59 to 86 degrees F)
    TussiCaps:
    - Store at controlled room temperature (between 68 and 77 degrees F)
    Tussionex:
    - Store between 68 to 77 degrees F, excursions permitted 59 to 86 degrees F
    VITUZ:
    - Store at controlled room temperature (between 68 and 77 degrees F)

    CONTRAINDICATIONS / PRECAUTIONS

    Opiate agonist hypersensitivity

    The use of chlorpheniramine; hydrocodone is contraindicated in patients who have hypersensitivity to chlorpheniramine; to hydrocodone, or any of the inactive ingredients in product. Although true opiate agonist hypersensitivity is rare, patients who have demonstrated a prior hypersensitivity reaction to hydrocodone should not receive other opioid agonists of the phenanthrene subclass including oxycodone, codeine and morphine. It is possible to treat these patients with an opioid agonist from the phenylpiperidine subclass (meperidine or fentanyl) or the diphenylheptane subclass (methadone).

    Alcoholism, depression, substance abuse

    Hydrocodone is an opioid agonist and therefore has abuse potential and a risk for fatal overdose from depressed respiration. Consumption of hydrocodone with ethanol will result in additive central nervous system (CNS) and respiratory depressant effects. Patients with alcoholism should be advised of this serious risk, or an alternative medication should be used. Addiction may occur in patients who obtain hydrocodone illicitly or in those appropriately prescribed the drug. The risk of addiction in any individual is unknown. Patients with an individual or family history of substance abuse (including alcoholism) or mental illness (e.g., major depression) have an increased risk of opioid abuse. Assess patients for risks of addiction, abuse, or misuse before drug initiation, and monitor patients who receive opioids routinely for development of these behaviors or conditions. Abuse and addiction are separate and distinct from physical dependence and tolerance; patients with addiction may not exhibit tolerance and symptoms of physical dependence. To discourage abuse, reserve chlorpheniramine; hydrocodone for use in adult patients for whom the benefits of cough suppression are expected to outweigh the risks, and in whom an adequate assessment of the etiology of the cough has been made. Prescribe the smallest appropriate quantity for the shortest duration that is consistent with individual treatment goals. Proper disposal instructions for unused drug should be given to patients; refill only after reevaluation of the need for continued treatment.

    Asthma, chronic obstructive pulmonary disease (COPD), coadministration with other CNS depressants, coma, cor pulmonale, hypoxemia, neuromuscular disease, obesity, pulmonary disease, respiratory depression, respiratory insufficiency, scoliosis, sleep apnea, status asthmaticus

    Chlorpheniramine; hydrocodone is contraindicated for use in patients with significant respiratory depression and in patients with acute or severe asthma (e.g., status asthmaticus) in unmonitored care settings or in the absence of resuscitative equipment. Receipt of moderate hydrocodone doses in these patients may significantly decrease pulmonary ventilation. Additionally, avoid coadministration with other CNS depressants when possible, as this significantly increases the risk for profound sedation, respiratory depression, coma, and death. Opioid analgesics and antitussives, including hydrocodone should not be used in patients with acute febrile illness associated with productive cough or in patients with chronic respiratory disease where interference with ability to clear the tracheobronchial tree of secretions would have a deleterious effect on the patient’s respiratory function. In patients with chronic obstructive pulmonary disease (COPD), cor pulmonale, decreased respiratory reserve, hypoxia, hypercapnia, respiratory insufficiency, upper airway obstruction, neuromuscular disease, or preexisting respiratory depression, it is recommended that non-opioid antitussives be considered as alternatives to hydrocodone, as even usual therapeutic doses of hydrocodone may decrease respiratory drive and cause apnea in these patient populations. Extreme caution should also be used in patients with chronic asthma, kyphoscoliosis (a type of scoliosis), hypoxemia, or paralysis of the phrenic nerve. Patients with advanced age, debilitation, or sleep apnea are at an increased risk for the development of respiratory depression associated with hydrocodone. Use with caution in patients with obesity as this is a risk factor for obstructive sleep-apnea syndrome and/or decreased respiratory reserve. Respiratory depression, if left untreated, may cause respiratory arrest and death. Symptoms of respiratory depression include a reduced urge to breathe, a decreased respiratory rate, or deep breaths separated by long pauses (a 'sighing' breathing pattern). Carbon dioxide retention from respiratory depression may also worsen opioid sedating effects. Concomitant use of chlorpheniramine; hydrocodone with CYP3A4 inhibitors or inducers, or CYP2D6 inhibitors should be avoided; concurrent use of a CYP3A4 or CYP2D6 inhibitor or discontinuation of a concurrently used CYP3A4 inducer may increase plasma hydrocodone concentrations and potentiate the risk of fatal respiratory depression. To reduce the risk of respiratory depression, proper dosing of chlorpheniramine; hydrocodone is essential. Monitor patients closely, especially within the first 24 to 72 hours of initiating therapy or when used in patients at higher risk. An unresponsive cough should be reevaluated in 5 days or sooner for possible underlying pathology, such as foreign body or lower respiratory tract disease. Management of respiratory depression should include observation, necessary supportive measures, and opioid antagonist use when indicated.

    Brain tumor, head trauma, increased intracranial pressure

    Avoid the use of chlorpheniramine; hydrocodone in patients with head trauma, intracranial lesions, or pre-existing increased intracranial pressure. In patients who may be susceptible to the intracranial effects of carbon dioxide (CO2) retention (e.g., those with evidence of increased intracranial pressure or brain tumor), chlorpheniramine; hydrocodone may reduce respiratory drive, and the resultant CO2 retention can further increase intracranial pressure. Furthermore, opioids produce adverse reactions that may obscure the clinical course of patients with head injuries.

    Accidental exposure, ethanol ingestion, ethanol intoxication, potential for overdose or poisoning

    Like all opioid analgesics, hydrocodone is associated with a significant potential for overdose or poisoning; proper patient selection and counseling is recommended. Ensure accuracy when prescribing, dispensing, and administering chlorpheniramine; hydrocodone cough products as dosing errors can result in accidental overdose and death. Chlorpheniramine; hydrocodone should be kept out of the reach of pediatric patients, others for whom the drug was not prescribed, and pets, as accidental exposure of even 1 dose of hydrocodone may cause respiratory failure and a fatal overdose. Ethanol ingestion with these products may result in increased plasma levels and a potentially fatal overdose of hydrocodone. Consumption of hydrocodone with ethanol will also result in additive CNS depressant effects and increase the risk for respiratory depression; ethanol intoxication must be avoided. Advise patients to avoid alcohol ingestion, including the ingestion of alcohol contained in prescription or non-prescription medications, during therapy.

    Driving or operating machinery

    Any patient receiving chlorpheniramine; hydrocodone should be warned about the possibility of sedation and to use caution when driving or operating machinery. Hydrocodone may produce marked drowsiness and impair the mental and/or physical abilities required for the performance of potentially hazardous tasks. Chlorpheniramine is a sedating antihistamine that may have additive effect. Advise patients to avoid engaging in hazardous tasks requiring mental alertness and motor coordination after ingestion of chlorpheniramine; hydrocodone. Avoid concurrent use of this cough product with alcohol or other CNS depressants because additional impairment of central nervous system performance may occur.

    Abrupt discontinuation

    Chlorpheniramine; hydrocodone is not intended for prolonged use for cough. Abrupt discontinuation of prolonged hydrocodone therapy can result in withdrawal symptoms. Gradually reduce the dose to prevent signs and symptoms of withdrawal in the physically-dependent patient. Avoid use of partial agonists (e.g., buprenorphine), mixed agonist/antagonists (e.g., nalbuphine), or pure antagonists (e.g., naloxone) in patients physically dependent on opioids, as an acute withdrawal syndrome may precipitate. The severity of the withdrawal syndrome produced will depend on the degree of physical dependence and on the administered dose of the concomitant drug. If treatment of respiratory depression in an individual physically dependent on opioids is necessary, administer the opioid antagonist with extreme care; titrate the antagonist dose by using smaller than usual doses. In addition, the use of partial agonists or mixed agonist/antagonists in patients who have received or are receiving hydrocodone should be avoided as these medications may reduce the therapeutic effect of hydrocodone.

    Cardiac disease, dehydration, hypotension, hypovolemia, orthostatic hypotension, shock, syncope

    Chlorpheniramine; hydrocodone may cause severe hypotension including orthostatic hypotension and syncope in ambulatory patients. There is increased risk in patients whose ability to maintain blood pressure has already been compromised by a reduced blood volume (hypovolemia or dehydration) or concurrent administration of certain CNS depressant drugs (e.g., phenothiazines or general anesthetics). Also use with caution in patients with significant cardiac disease. Monitor these patients for signs of hypotension after initiating chlorpheniramine; hydrocodone. In patients with circulatory shock, hydrocodone may cause vasodilation that can further reduce cardiac output and blood pressure. Avoid the use of chlorpheniramine; hydrocodone in patients with circulatory shock.

    Acute abdomen, constipation, diarrhea, GI disease, GI obstruction, ileus, inflammatory bowel disease, ulcerative colitis

    Chlorpheniramine; hydrocodone is contraindicated in patients with known or suspected GI obstruction, including paralytic ileus. Due to the effects of opiate agonists on the gastrointestinal tract, chlorpheniramine; hydrocodone should be used cautiously in patients with GI disease, such as ulcerative colitis (UC). Patients with UC or other inflammatory bowel disease may be more sensitive to constipation caused by opioid agonists. Opioid agonists may obscure the diagnosis or clinical course in patients with acute abdomen. Although opiate agonists are contraindicated for use in patients with diarrhea secondary to poisoning or infectious diarrhea, antimotility agents have been used successfully in these patients. If possible, opiate agonists should not be given until the toxic substance has been eliminated.

    Biliary tract disease, gallbladder disease, pancreatitis

    Chlorpheniramine; hydrocodone should be used with caution in patients with biliary tract disease, such as acute pancreatitis and gallbladder disease. As with other opioid agonists, hydrocodone may cause spasm of the sphincter of Oddi, increasing biliary tract pressure. Biliary effects due to opiate agonists have resulted in an increase in plasma amylase and lipase concentrations up to 2 to 15 times the normal values; determination of these enzyme levels may be unreliable for 24 hours after administration.

    Hepatic disease

    Chlorpheniramine; hydrocodone should be used with caution in patients with severe hepatic disease, and patients should be monitored closely for respiratory depression, sedation, and hypotension. Patients with severe hepatic impairment may have higher plasma concentrations of hydrocodone or chlorpheniramine than those with normal hepatic function. In acute situations, these patients require close monitoring to avoid excessive toxicity. Patients with chronic liver disease may require less frequent dosing intervals.

    Renal failure, renal impairment

    Chlorpheniramine; hydrocodone should be used with caution in patients with severe renal impairment or renal failure, and these patients should be monitored closely for hydrocodone effects such as respiratory depression, sedation, and hypotension. Both chlorpheniramine and hydrocodone accumulation or prolonged duration of action may occur in patients with severe renal impairment. In acute situations, such patients require close monitoring to avoid excessive toxicity. Patients with chronic renal disease may require lower doses or less frequent dosing intervals.

    Bladder obstruction, closed-angle glaucoma, contact lenses, prostatic hypertrophy, urethral stricture, urinary retention

    Hydrocodone may cause urinary retention and oliguria, due to increasing the tension of the detrusor muscle. Chlorpheniramine has anticholinergic effects that may also increase risk for urinary retention, particularly in at-risk patients. Patients more prone to urinary tract effects include those patients with prostatic hypertrophy, urethral stricture, bladder obstruction, or pelvic tumors. The concomitant use of other anticholinergic drugs with chlorpheniramine; hydrocodone may increase the risk of urinary retention. Give chlorpheniramine; hydrocodone with caution in patients with closed-angle glaucoma. The drugs can induce cycloplegia and mydriasis that may increase intraocular pressure. Antihistamines such as chlorpheniramine may cause dry eyes that may be of significance in wearers of contact lenses.

    Seizure disorder, seizures

    Hydrocodone may increase the frequency of seizures in patients with a seizure disorder, and may increase the risk of seizures occurring in other clinical settings associated with seizures. Monitor patients with a history of seizure disorders for worsened seizure control during chlorpheniramine; hydrocodone therapy.

    Adrenal insufficiency, hypothyroidism, myxedema

    Use chlorpheniramine; hydrocodone with caution in patients with Addison's disease or other conditions of adrenal insufficiency. Cases of adrenal insufficiency have been reported with opioid use, more often following more than 1 month of use. Presentation of adrenal insufficiency may include non-specific symptoms and signs including nausea, vomiting, anorexia, fatigue, weakness, dizziness, and low blood pressure. If adrenal insufficiency is suspected, confirm the diagnosis with diagnostic testing as soon as possible. If adrenal insufficiency is diagnosed, treat with physiologic replacement doses of corticosteroids. Wean the patient off of the opioid to allow adrenal function to recover and continue corticosteroid treatment until adrenal function recovers. Other opioids may be tried as some cases reported use of a different opioid without recurrence of adrenal insufficiency. The information available does not identify any particular opioids as being more likely to be associated with adrenal insufficiency. Opioids inhibit the secretion of adrenocorticotropic hormone (ACTH), cortisol, and luteinizing hormone (LH). Monitor patients for symptoms of opioid-induced endocrinopathy, particularly those receiving a daily dose equivalent to 100 mg or more of morphine. Patients should seek immediate medical attention if they experience symptoms of adrenocortical insufficiency. Chronic opioid use may lead to symptoms of hypogonadism, resulting from changes in the hypothalamic-pituitary-gonadal axis. Male patients with signs or symptoms of androgen deficiency should undergo evaluation. Patients with hypothyroidism or myxedema should also receive opioid therapy with caution, as thyroid stimulating hormone (TSH) may be either stimulated or inhibited by opioids.

    Labor, neonatal opioid withdrawal syndrome, obstetric delivery, pregnancy

    There are no data or data are insufficient to inform a drug-associated risk for major birth defects or miscarriage with chlorpheniramine; hydrocodone use as an antitussive in human pregnancy. In animal studies, hydrocodone administered to pregnant rats during organogenesis, gestation, or lactation resulted in decreased body weight of offspring, reduced nursing behavior, increased post-implantation loss, and non-viable litters at doses approximately 2- to 3-fold human hydrocodone doses of 100 to 180 mg/day; decreases in survival were seen in the offspring of rats given hydrocodone during gestation and lactation at doses equivalent to a human dose of 180 mg/day and above. Fetal malformations including increases in umbilical hernias, irregularly shaped bones, and delays in fetal skeletal maturation occurred with doses equivalent to 15 times an adult human dose of 100 mg/day. Chlorpheniramine; hydrocodone is not recommended for use in women during and immediately prior to labor and obstetric delivery because oral opioid agonists may cause respiratory depression in the newborn. Opioid analgesics can prolong labor by reducing the strength and frequency of uterine contractions; however, this effect may be offset by an increased rate of cervical dilation. Further, prolonged maternal use of long-acting opioids, such as hydrocodone, during pregnancy may result in neonatal opioid withdrawal syndrome (NOWS). This syndrome can be life-threatening. Severe symptoms may require pharmacologic therapy managed by clinicians familiar with neonatal opioid withdrawal. Monitor the neonate for withdrawal symptoms including irritability, hyperactivity, abnormal sleep pattern, high-pitched crying, tremor, vomiting, diarrhea, and failure to gain weight. Onset, duration, and severity of opioid withdrawal may vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination by the newborn.

    Breast-feeding

    Because of the potential for serious adverse reactions, including excess sedation, respiratory depression, and death in a nursing infant, advise patients that breast-feeding is not recommended during treatment with chlorpheniramine; hydrocodone. Hydrocodone is distributed into breast milk at varying degrees depending upon the dose. A pharmacokinetic study in 30 women receiving hydrocodone for postpartum pain found that breast-fed newborns (postnatal age 3 to 11 days) received a median of 1.6% (range 0.2% to 9%) of the maternal weight-adjusted hydrocodone dosage. The total opiate dosage via breast milk, including the active metabolite hydromorphone, was found to be 0.7% of a therapeutic dosage used for an older infant. The authors concluded that doses of hydrocodone given to breast-feeding mothers should be limited to 30 mg/day and doses higher than 40 mg/day should be avoided. Chlorpheniramine also is excreted into the breast milk and can induce hyperexcitability in the infant and seizures in a premature infant; it may also inhibit lactation.

    Children, infants, neonates

    Opioid cough and cold medicines that contain hydrocodone, such as chlorpheniramine; hydrocodone, are not indicated for pediatric patients under 18 years of age. These products are contraindicated in neonates, infants, and children less than 6 years of age. The use of hydrocodone in children younger than 6 years of age has been associated with fatal respiratory depression when used as recommended. Risks of these medicines outweigh their benefits in patients younger than 18 years. Such risks include slowed or difficult breathing, misuse, abuse, addiction, overdose, and death.

    Geriatric

    Use chlorpheniramine; hydrocodone with caution in geriatric patients or debilitated patients. Geriatric or debilitated patients are more susceptible to adverse reactions from opiate agonists, especially sedation and respiratory depression, probably as a result of the altered distribution of the drug and decreased elimination. Initial doses of opiate agonists may need to be reduced, and doses should be carefully titrated, taking into account therapeutic effect, adverse reactions, and concomitant conditions and drugs that may increase CNS depression and depress respiration. Geriatric patients also have an increased susceptibility to anticholinergic effects of chlorpheniramine versus younger adults.[57346] [58667] According to the Beers Criteria, first-generation sedating antihistamines are considered potentially inappropriate medications (PIMs) in elderly patients; avoid use as they are highly anticholinergic, there is reduced clearance in advanced age, tolerance develops when used as hypnotics, and there is a greater risk of anticholinergic effects (e.g., confusion, dry mouth, constipation) and toxicity compared to younger adults. Avoid drugs with strong anticholinergic properties in geriatric patients with the following conditions due to the potential for exacerbation of the condition or adverse effects: dementia/cognitive impairment (adverse CNS effects), delirium/high risk of delirium (new-onset or worsening delirium), or lower urinary tract symptoms/benign prostatic hyperplasia in men (urinary retention or hesitancy). Opiate agonists are considered PIMs in geriatric patients with a history of falls or fractures and should be avoided in these populations, except in the setting of severe acute pain, since opiates can produce ataxia, impaired psychomotor function, syncope, and additional falls. If an opiate must be used, consider reducing the use of other CNS-active medications that increase the risk of falls and fractures and implement strategies to reduce fall risk.[63923] The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities; cough, cold, and allergy medications should be used only for a limited duration (less than 14 days) unless there is documented evidence of enduring symptoms that cannot otherwise be alleviated. First-generation antihistamines, such as chlorpheniramine, have strong anticholinergic properties and are not considered medications of choice in older individuals.[60742]

    ADVERSE REACTIONS

    Severe

    seizures / Delayed / Incidence not known
    increased intracranial pressure / Early / Incidence not known
    cyanosis / Early / Incidence not known
    coma / Early / Incidence not known
    respiratory arrest / Rapid / Incidence not known
    pulmonary edema / Early / Incidence not known
    anaphylactoid reactions / Rapid / Incidence not known
    GI obstruction / Delayed / Incidence not known
    pancreatitis / Delayed / Incidence not known
    biliary obstruction / Delayed / Incidence not known
    ileus / Delayed / Incidence not known
    serotonin syndrome / Delayed / Incidence not known
    neonatal respiratory depression / Rapid / Incidence not known
    neonatal opioid withdrawal syndrome / Delayed / Incidence not known
    aplastic anemia / Delayed / Incidence not known
    agranulocytosis / Delayed / Incidence not known

    Moderate

    constipation / Delayed / 10.0
    physiological dependence / Delayed / 10.0
    euphoria / Early / Incidence not known
    impaired cognition / Early / Incidence not known
    ataxia / Delayed / Incidence not known
    hallucinations / Early / Incidence not known
    confusion / Early / Incidence not known
    migraine / Early / Incidence not known
    depression / Delayed / Incidence not known
    dysphoria / Early / Incidence not known
    dyskinesia / Delayed / Incidence not known
    dyspnea / Early / Incidence not known
    respiratory depression / Rapid / Incidence not known
    wheezing / Rapid / Incidence not known
    dysphagia / Delayed / Incidence not known
    hyperamylasemia / Delayed / Incidence not known
    peripheral vasodilation / Rapid / Incidence not known
    QT prolongation / Rapid / Incidence not known
    chest pain (unspecified) / Early / Incidence not known
    palpitations / Early / Incidence not known
    peripheral edema / Delayed / Incidence not known
    sinus tachycardia / Rapid / Incidence not known
    orthostatic hypotension / Delayed / Incidence not known
    hot flashes / Early / Incidence not known
    hypotension / Rapid / Incidence not known
    urinary retention / Early / Incidence not known
    bladder spasm / Early / Incidence not known
    blurred vision / Early / Incidence not known
    impotence (erectile dysfunction) / Delayed / Incidence not known
    adrenocortical insufficiency / Delayed / Incidence not known
    infertility / Delayed / Incidence not known
    psychological dependence / Delayed / Incidence not known
    withdrawal / Early / Incidence not known
    tolerance / Delayed / Incidence not known
    thrombocytopenia / Delayed / Incidence not known

    Mild

    headache / Early / 1.0-10.0
    lethargy / Early / 1.0-10.0
    nausea / Early / 1.0-10.0
    vomiting / Early / 1.0-10.0
    dizziness / Early / 10.0
    drowsiness / Early / 10.0
    xerostomia / Early / 10.0
    tinnitus / Delayed / Incidence not known
    restlessness / Early / Incidence not known
    tremor / Early / Incidence not known
    emotional lability / Early / Incidence not known
    agitation / Early / Incidence not known
    psychomotor impairment / Early / Incidence not known
    anxiety / Delayed / Incidence not known
    fatigue / Early / Incidence not known
    insomnia / Early / Incidence not known
    vertigo / Early / Incidence not known
    nasal congestion / Early / Incidence not known
    pharyngitis / Delayed / Incidence not known
    cough / Delayed / Incidence not known
    sinusitis / Delayed / Incidence not known
    nasal dryness / Early / Incidence not known
    bronchial secretions / Early / Incidence not known
    urticaria / Rapid / Incidence not known
    flushing / Rapid / Incidence not known
    pruritus / Rapid / Incidence not known
    rash / Early / Incidence not known
    hyperhidrosis / Delayed / Incidence not known
    dyspepsia / Early / Incidence not known
    gastroesophageal reflux / Delayed / Incidence not known
    abdominal pain / Early / Incidence not known
    syncope / Early / Incidence not known
    infection / Delayed / Incidence not known
    miosis / Early / Incidence not known
    diplopia / Early / Incidence not known
    xerophthalmia / Early / Incidence not known
    amenorrhea / Delayed / Incidence not known
    libido decrease / Delayed / Incidence not known
    muscle cramps / Delayed / Incidence not known
    back pain / Delayed / Incidence not known
    arthralgia / Delayed / Incidence not known

    DRUG INTERACTIONS

    Abiraterone: (Moderate) Concomitant use of hydrocodone with abiraterone may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of abiraterone could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If abiraterone is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP2D6. Abiraterone is a moderate inhibitor of CYP2D6.
    Acetaminophen; Caffeine; Dihydrocodeine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Acetaminophen; Codeine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Acetaminophen; Dextromethorphan; Doxylamine: (Moderate) Concomitant use of opioid agonists with doxylamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with doxylamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Acetaminophen; Dichloralphenazone; Isometheptene: (Moderate) Additive CNS depression may occur if dichloralphenazone is used concomitantly with any of the sedating H1 blockers. Use caution with this combination. Dosage reduction of one or both agents may be necessary. (Moderate) Concomitant use of hydrocodone with other central nervous system depressants can potentiate the effects of hydrocodone and may lead to additive CNS or respiratory depression. If hydrocodone is used with a CNS depressant, the dose of one or both drugs should be reduced.
    Acetaminophen; Diphenhydramine: (Moderate) Concomitant use of opioid agonists with diphenhydramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with diphenhydramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Acetaminophen; Hydrocodone: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Acetaminophen; Oxycodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Acetaminophen; Pamabrom; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Acetaminophen; Pentazocine: (Major) Avoid the concomitant use of pentazocine and opiate agonists, such as hydrocodone. Pentazocine is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects of hydrocodone. Pentazocine may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of pentazocine with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist. (Moderate) Use pentazocine with caution in any patient receiving medication with CNS depressant and/or anticholinergic activity. Coadministration of pentazocine with sedating H1-blockers may result in additive respiratory and CNS depression and anticholinergic effects, such as urinary retention and constipation.
    Acetaminophen; Propoxyphene: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Acrivastine; Pseudoephedrine: (Major) Avoid coadministration of opioid agonists with acrivastine due to the risk of additive CNS depression.
    Aldesleukin, IL-2: (Moderate) Aldesleukin, IL-2 may affect CNS function significantly. Therefore, psychotropic pharmacodynamic interactions could occur following concomitant administration of drugs with significant CNS or psychotropic activity such as opiate agonists. In addition, aldesleukin, IL-2, is a CYP3A4 inhibitor and may increase oxycodone plasma concentrations and related toxicities including potentially fatal respiratory depression. If therapy with both agents is necessary, monitor patients for an extended period and adjust oxycodone dosage as necessary.
    Alfentanil: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Aliskiren; Amlodipine: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Aliskiren; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Almotriptan: (Moderate) Because of the potential risk and severity of serotonin syndrome, caution should be observed when administering hydrocodone with serotonin-recptor agonists. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome particularly during treatment initiation and dose adjustment. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
    Alosetron: (Major) Patients taking medications that decrease GI motility may be at greater risk for serious complications from alosetron, like constipation, via a pharmacodynamic interaction. Constipation is the most frequently reported adverse effect with alosetron. Alosetron, if used with drugs such as opiate agonists, may seriously worsen constipation, leading to events such as GI obstruction/impaction or paralytic ileus. (Moderate) Alosetron, if combined with drugs that possess anticholinergic properties like sedating H1 blockers, may seriously worsen constipation, leading to events such as GI obstruction/impaction or paralytic ileus.
    Alprazolam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Aluminum Hydroxide; Magnesium Hydroxide: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as magnesium hydroxide, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Aluminum Hydroxide; Magnesium Hydroxide; Simethicone: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as magnesium hydroxide, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Alvimopan: (Moderate) Patients should not take alvimopan if they have received therapeutic doses of opiate agonists for more than seven consecutive days immediately before initiation of alvimopan therapy. Patients recently exposed to opioids are expected to be more sensitive to the effects of mu-opioid receptor antagonists and may experience adverse effects localized to the gastrointestinal tract such as abdominal pain, nausea, vomiting, and diarrhea.
    Amantadine: (Moderate) Medications with significant anticholinergic activity may potentiate the anticholinergic effects of amantadine, and may increase the risk of antimuscarinic-related side effects. Additive drowsiness may also occur.
    Ambenonium Chloride: (Moderate) The therapeutic benefits of ambenonium may be diminished when coadministered with drugs known to exhibit anticholinergic properties including sedating H1-blockers. When concurrent use cannot be avoided, monitor the patient for reduced ambenonium efficacy.
    Amide local anesthetics: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Amikacin: (Minor) Chlorpheniramine may effectively mask vestibular symptoms (e.g. dizziness, tinnitus, or vertigo) that are associated with ototoxicity induced by aminoglycosides. Antiemetics block the histamine or acetylcholine response that causes nausea due to vestibular emetic stimuli such as motion.
    Amiloride: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when amiloride is administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when amiloride is administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Aminoglycosides: (Minor) Chlorpheniramine may effectively mask vestibular symptoms (e.g. dizziness, tinnitus, or vertigo) that are associated with ototoxicity induced by aminoglycosides. Antiemetics block the histamine or acetylcholine response that causes nausea due to vestibular emetic stimuli such as motion.
    Amiodarone: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amiodarone is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP2D6 and CYP3A4 substrate, and coadministration with CYP2D6 and CYP3A4 inhibitors like amiodarone can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced with a combined CYP2D6 and CYP3A4 inhibitor. If amiodarone is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Amlodipine: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Amlodipine; Atorvastatin: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Amlodipine; Benazepril: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Amlodipine; Celecoxib: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate. (Moderate) Concomitant use of hydrocodone with celecoxib may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of celecoxib could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If celecoxib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP2D6. Celecoxib is an inhibitor of CYP2D6. (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Amlodipine; Olmesartan: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Amlodipine; Valsartan: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of amlodipine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like amlodipine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If amlodipine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Amobarbital: (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities.
    Amoxapine: (Major) Concomitant use of opioid agonists with amoxapine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with amoxapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Additive anticholinergic effects may be seen when amoxapine is used concomitantly with drugs are known to possess relatively significant antimuscarinic properties, including sedating H1-blockers. Antimuscarinic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature Additive sedation may also occur.
    Amoxicillin; Clarithromycin; Omeprazole: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of clarithromycin is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like clarithromycin can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If clarithromycin is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Amphetamine: (Moderate) Amphetamines may pharmacodynamically counteract the sedative properties of some antihistamines, such as the sedating H1-blockers (i.e., diphenhydramine). This effect may be clinically important if a patient is receiving an antihistamine agent for treatment of insomnia. Alternatively, if a patient is receiving an amphetamine for treatment of narcolepsy, the combination with a sedating antihistamine may reverse the action of the amphetamine. (Moderate) If concomitant use of hydrocodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Amphetamine; Dextroamphetamine Salts: (Moderate) Amphetamines may pharmacodynamically counteract the sedative properties of some antihistamines, such as the sedating H1-blockers (i.e., diphenhydramine). This effect may be clinically important if a patient is receiving an antihistamine agent for treatment of insomnia. Alternatively, if a patient is receiving an amphetamine for treatment of narcolepsy, the combination with a sedating antihistamine may reverse the action of the amphetamine.
    Amphetamine; Dextroamphetamine: (Moderate) Amphetamines may pharmacodynamically counteract the sedative properties of some antihistamines, such as the sedating H1-blockers (i.e., diphenhydramine). This effect may be clinically important if a patient is receiving an antihistamine agent for treatment of insomnia. Alternatively, if a patient is receiving an amphetamine for treatment of narcolepsy, the combination with a sedating antihistamine may reverse the action of the amphetamine. (Moderate) If concomitant use of hydrocodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Amphetamines: (Moderate) If concomitant use of hydrocodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Anticholinergics: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect. (Moderate) The anticholinergic effects of sedating H1-blockers may be enhanced when combined with other antimuscarinics. Clinicians should note that anticholinergic effects might be seen not only on GI smooth muscle, but also on bladder function, the eye, and temperature regulation. Additive drowsiness may also occur when antimuscarinics are combined with sedating antihistamines.
    Apalutamide: (Moderate) Concomitant use of hydrocodone with apalutamide can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal; consider increasing the dose of hydrocodone as needed. If apalutamide is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and apalutamide is a strong CYP3A4 inducer.
    Apomorphine: (Major) Concomitant use of opioid agonists with apomorphine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking apomorphine. Limit the use of opioid pain medications with entacapone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Dopaminergic agents like apomorphine have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment. (Moderate) Apomorphine causes significant somnolence. Concomitant administration of apomorphine and chlorpheniramine could result in additive depressant effects. Careful monitoring is recommended during combined use. A dose reduction of one or both drugs may be warranted.
    Apraclonidine: (Minor) Theoretically, apraclonidine might potentiate the effects of CNS depressant drugs such as opiate agonists. Although no specific drug interactions were identified with systemic agents and apraclonidine during clinical trials, apraclonidine can cause dizziness and somnolence.
    Aprepitant, Fosaprepitant: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of oral, multi-day regimens of aprepitant is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like aprepitant can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If aprepitant is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Aripiprazole: (Moderate) Concomitant use of opioid agonists with aripiprazole may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking aripiprazole Limit the use of opioid pain medications with aripiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Armodafinil: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with armodafinil is necessary; consider increasing the dose of hydrocodone as needed. If armodafinil is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and armodafinil is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Artemether; Lumefantrine: (Moderate) Concomitant use of hydrocodone with artemether; lumefantrine may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of artemether; lumefantrine could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If artemether; lumefantrine is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP2D6. Artemether; lumefantrine is a moderate inhibitor of CYP2D6. (Moderate) Lumefantrine is an inhibitor and chlorpheniramine is a substrate/inhibitor of the CYP2D6 isoenzyme; therefore, coadministration may lead to increased chlorpheniramine concentrations. Concomitant use warrants caution due to the potential for increased side effects.
    Articaine; Epinephrine: (Moderate) Chlorpheniramine may potentiate the arrhythmogenic effects of epinephrine. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Asciminib: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of asciminib is necessary. Hydrocodone is a CYP3A substrate, and coadministration with CYP3A inhibitors like asciminib can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If asciminib is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Asenapine: (Moderate) Concomitant use of opioid agonists with asenapine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking asenapine. Limit the use of opioid pain medications with asenapine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Using drugs that can cause CNS depression, such as sedating H1-blockers, concomitantly with asenapine may increase both the frequency and the intensity of adverse effects such as drowsiness, sedation, and dizziness.
    Aspirin, ASA; Butalbital; Caffeine: (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities.
    Aspirin, ASA; Butalbital; Caffeine; Codeine: (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Aspirin, ASA; Caffeine; Dihydrocodeine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Aspirin, ASA; Caffeine; Orphenadrine: (Major) Concomitant use of opioid agonists with orphenadrine may cause excessive sedation and somnolence. Limit the use of opioid pain medications with orphenadrine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking orphenadrine. (Moderate) Additive anticholinergic effects may be seen when drugs with anticholinergic properties, like sedating H1-blockers and orphenadrine, are used concomitantly. Adverse effects may be seen not only on GI smooth muscle, but also on bladder function, the CNS, the eye, and temperature regulation. Additive drowsiness may also occur.
    Aspirin, ASA; Carisoprodol: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking carisoprodol. (Moderate) Carisoprodol is metabolized to meprobamate, a significant CNS depressant. Carisoprodol can cause additive CNS depression if used concomitantly with other CNS depressants. Additive effects of sedation and dizziness, which can impair the ability to undertake tasks requiring mental alertness, may occur if carisoprodol is taken with sedating H1-blockers. Utilize appropriate caution if carisoprodol is coadministered with another CNS depressant.
    Aspirin, ASA; Carisoprodol; Codeine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking carisoprodol. (Moderate) Carisoprodol is metabolized to meprobamate, a significant CNS depressant. Carisoprodol can cause additive CNS depression if used concomitantly with other CNS depressants. Additive effects of sedation and dizziness, which can impair the ability to undertake tasks requiring mental alertness, may occur if carisoprodol is taken with sedating H1-blockers. Utilize appropriate caution if carisoprodol is coadministered with another CNS depressant. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Aspirin, ASA; Oxycodone: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Use an initial dose of oxycodone at 1/3 to 1/2 the usual dosage. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Atazanavir: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of atazanavir is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like atazanavir can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If atazanavir is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Atazanavir; Cobicistat: (Moderate) Caution is warranted when cobicistat is administered with chlorpheniramine as there is a potential for elevated chlorpheniramine and cobicistat concentrations. Chlorpheniramine is a CYP2D6 substrate/inhibitor. Cobicistat is a substrate/inhibitor of CYP2D6. (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of atazanavir is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like atazanavir can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If atazanavir is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone. (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of cobicistat is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP2D6 and CYP3A4 substrate, and coadministration with CYP2D6 and CYP3A4 inhibitors like cobicistat can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced with a combined CYP2D6 and CYP3A4 inhibitor. If cobicistat is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Atenolol; Chlorthalidone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Atropine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Major) Avoid concomitant use of hydrocodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Atropine; Difenoxin: (Moderate) An enhanced CNS depressant effect may occur when diphenoxylate/difenoxin is combined with other CNS depressants. Diphenoxylate/difenoxin decreases GI motility. Other drugs that also decrease GI motility, such as sedating H1 blockers, may produce additive effects with diphenoxylate/difenoxin if used concomitantly. (Moderate) Concurrent administration of diphenoxylate/difenoxin with other opiate agonists can potentiate the CNS-depressant effects of diphenoxylate/difenoxin. Use caution during coadministration. In addition, diphenoxylate/difenoxin use may cause constipation; cases of severe GI reactions including toxic megacolon and adynamic ileus have been reported. Reduced GI motility when combined with opiate agonists may increase the risk of serious GI related adverse events. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Atropine; Edrophonium: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Avacopan: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of avacopan is necessary. Hydrocodone is a CYP3A substrate, and coadministration with CYP3A inhibitors like avacopan can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If avacopan is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Azelastine: (Major) An enhanced CNS depressant effect may occur when azelastine is combined with other CNS depressants including sedating H1-blockers; avoid concurrent use. (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking azelastine. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Azelastine; Fluticasone: (Major) An enhanced CNS depressant effect may occur when azelastine is combined with other CNS depressants including sedating H1-blockers; avoid concurrent use. (Major) Concomitant use of opioid agonists with azelastine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking azelastine. Limit the use of opioid pain medications with azelastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Azilsartan; Chlorthalidone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Baclofen: (Major) Concomitant use of opioid agonists with baclofen may cause excessive sedation and somnolence. Limit the use of opioid pain medications with baclofen to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking baclofen. (Moderate) An enhanced CNS depressant effect may occur when sedating H1-blockers are combined with other CNS depressants including skeletal muscle relaxants, such as baclofen.
    Barbiturates: (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities.
    Belladonna Alkaloids; Ergotamine; Phenobarbital: (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Belladonna; Opium: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Belumosudil: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of belumosudil is necessary. Hydrocodone is a CYP3A substrate, and coadministration with CYP3A inhibitors like belumosudil can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If belumosudil is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Belzutifan: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with belzutifan is necessary; consider increasing the dose of hydrocodone as needed. If belzutifan is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs of respiratory depression and sedation. Hydrocodone is a CYP3A substrate and belzutifan is a weak CYP3A inducer. Concomitant use with CYP3A inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Bendroflumethiazide; Nadolol: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Benzhydrocodone; Acetaminophen: (Major) Benzhydrodocone is a prodrug for hydrocodone. Use caution to avoid duplicate therapy. Concomitant use of opioid agonists with benzhydrocodone may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of benzhydrocodone with opioid agonists to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If benzhydrocodone is initiated in a patient taking morphine, reduce initial dosage and titrate to clinical response. If morphine is prescribed in a patient taking benzhydrocodone, use a lower initial dose of morphine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid prescribing opioid cough medications in patients taking other opioid agonists. Careful monitoring, particularly during treatment initiation and dose adjustment, is recommended during coadministration of benzhydrocodone and morphine because of the potential risk of serotonin syndrome. Discontinue benzhydrocodone if serotonin syndrome is suspected. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Benzodiazepines: (Moderate) Coadministration can potentiate the CNS effects (e.g., increased sedation or respiratory depression) of either agent. Use caution with this combination.
    Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Major) Avoid concomitant use of hydrocodone in patients receiving methylene blue or within 14 days of stopping treatment with methylene blue due to the risk of serotonin syndrome or opioid toxicity, including respiratory depression. If cannot avoid use, choose the lowest possible methylene blue dose and observe the patient closely for up to 4 hours after administration. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Benzonatate: (Moderate) The vagal effects and respiratory depression induced by hydrocodone may be increased by the use of benzonatate.
    Benzphetamine: (Moderate) Amphetamines may pharmacodynamically counteract the sedative properties of some antihistamines, such as the sedating H1-blockers. This effect may be clinically important if a patient is receiving an antihistamine agent for treatment of insomnia. Alternatively, if a patient is receiving an amphetamine for treatment of narcolepsy, the combination with a sedating antihistamine may reverse the action of the amphetamine. (Moderate) If concomitant use of hydrocodone and amphetamines is warranted, monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Benztropine: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Berotralstat: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of berotralstat is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP2D6 and CYP3A4 substrate, and coadministration with CYP2D6 and CYP3A4 inhibitors like berotralstat can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced with a combined CYP2D6 and CYP3A4 inhibitor. If berotralstat is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Bethanechol: (Moderate) Bethanechol facilitates intestinal and bladder function via parasympathomimetic actions. Opiate agonists impair the peristaltic activity of the intestine. Thus, these drugs can antagonize the beneficial actions of bethanechol on GI motility.
    Bexarotene: (Moderate) Concomitant use of hydrocodone with bexarotene can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal; consider increasing the dose of hydrocodone as needed. If bexarotene is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and bexarotene is a moderate CYP3A4 inducer.
    Bicalutamide: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of bicalutamide is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like bicalutamide can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If bicalutamide is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Bisacodyl: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as bisacodyl, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Bismuth Subcitrate Potassium; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Bismuth Subsalicylate: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Bismuth Subsalicylate; Metronidazole; Tetracycline: (Moderate) Additive constipation may be seen with concurrent use of opiate agonists and antidiarrheals. Opioids increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Boceprevir: (Major) Monitor for respiratory depression and sedation if hydrocodone and boceprevir are coadministered; consider dosage adjustments if necessary. Hydrocodone is metabolized by CYP3A4. Concomitant administration of a CYP3A4 inhibitor, such as boceprevir, may cause an increase in hydrocodone plasma concentrations, which could increase or prolong adverse effects.
    Bosentan: (Moderate) Concomitant use of hydrocodone with bosentan can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal; consider increasing the dose of hydrocodone as needed. If bosentan is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and bosentan is a moderate CYP3A4 inducer.
    Brexpiprazole: (Major) Concomitant use of opioid agonists with brexpiprazole may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking brexpiprazole. Limit the use of opioid pain medications with brexpiprazole to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Brigatinib: (Moderate) Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal if coadministration with brigatinib is necessary; consider increasing the dose of hydrocodone as needed. If brigatinib is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs of respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and brigatinib is a weak CYP3A4 inducer. Concomitant use with CYP3A4 inducers can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence.
    Brimonidine: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
    Brimonidine; Brinzolamide: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
    Brimonidine; Timolol: (Moderate) Based on the sedative effects of brimonidine in individual patients, brimonidine administration has potential to enhance the CNS depressants effects of opiate agonists.
    Brompheniramine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Brompheniramine; Carbetapentane; Phenylephrine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including sedating h1-blockers. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Brompheniramine; Dextromethorphan; Guaifenesin: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Brompheniramine; Dextromethorphan; Phenylephrine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Brompheniramine; Guaifenesin; Hydrocodone: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Brompheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Brompheniramine; Phenylephrine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Brompheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Brompheniramine; Pseudoephedrine; Dextromethorphan: (Moderate) Concomitant use of opioid agonists with brompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with brompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Budesonide; Glycopyrrolate; Formoterol: (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Bumetanide: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when loop diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Bupivacaine Liposomal: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Bupivacaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Bupivacaine; Epinephrine: (Moderate) Chlorpheniramine may potentiate the arrhythmogenic effects of epinephrine. (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Bupivacaine; Lidocaine: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Bupivacaine; Meloxicam: (Moderate) The use of these drugs together must be approached with caution. Although commonly used together for additive analgesic effects, the patient must be monitored for respiratory depression, hypotension, and excessive sedation due to additive effects on the CNS and blood pressure. In rare instances, serious morbidity and mortality has occurred. Limit the use of opiate pain medications with local anesthetics to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. The use of the local anesthetic will allow for the use a lower initial dose of the opiate and then the doses can be titrated to proper clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation.
    Buprenorphine: (Major) Buprenorphine is a mixed opiate agonist/antagonist with strong affinity for the mu-receptor that may partially block the effects of full mu-receptor opiate agonists and reduce analgesic effects. In some cases of acute pain, trauma, or during surgical management, opiate-dependent patients receiving buprenorphine maintenance therapy may require concurrent treatment with opiate agonists, such as hydrocodone. In these cases, health care professionals must exercise caution in opiate agonist dose selection, as higher doses of an opiate agonist may be required to compete with buprenorphine at the mu-receptor. Management strategies may include adding a short-acting opiate agonist to achieve analgesia in the presence of buprenorphine, discontinuation of buprenorphine and use of an opiate agonist to avoid withdrawal and achieve analgesia, or conversion of buprenorphine to methadone while using additional opiate agonists if needed. Closely monitor patients for CNS or respiratory depression. When buprenorphine is used for analgesia, avoid co-use with opiate agonists. Buprenorphine may cause withdrawal symptoms in patients receiving chronic opiate agonists as well as possibly potentiate CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist. (Moderate) If concurrent use of sedating H1-blockers and buprenorphine is necessary, consider a dose reduction of one or both drugs because of the potential for additive pharmacological effects. Hypotension, profound sedation, coma, respiratory depression, or death may occur during co-administration of buprenorphine and other CNS depressants. Prior to concurrent use of buprenorphine in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Evaluate the patient's use of alcohol or illicit drugs. It is recommended that the injectable buprenorphine dose be halved for patients who receive other drugs with CNS depressant effects; for the buprenorphine transdermal patch, start with the 5 mcg/hour patch. Monitor patients for sedation or respiratory depression.
    Buprenorphine; Naloxone: (Major) Buprenorphine is a mixed opiate agonist/antagonist with strong affinity for the mu-receptor that may partially block the effects of full mu-receptor opiate agonists and reduce analgesic effects. In some cases of acute pain, trauma, or during surgical management, opiate-dependent patients receiving buprenorphine maintenance therapy may require concurrent treatment with opiate agonists, such as hydrocodone. In these cases, health care professionals must exercise caution in opiate agonist dose selection, as higher doses of an opiate agonist may be required to compete with buprenorphine at the mu-receptor. Management strategies may include adding a short-acting opiate agonist to achieve analgesia in the presence of buprenorphine, discontinuation of buprenorphine and use of an opiate agonist to avoid withdrawal and achieve analgesia, or conversion of buprenorphine to methadone while using additional opiate agonists if needed. Closely monitor patients for CNS or respiratory depression. When buprenorphine is used for analgesia, avoid co-use with opiate agonists. Buprenorphine may cause withdrawal symptoms in patients receiving chronic opiate agonists as well as possibly potentiate CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist. (Moderate) If concurrent use of sedating H1-blockers and buprenorphine is necessary, consider a dose reduction of one or both drugs because of the potential for additive pharmacological effects. Hypotension, profound sedation, coma, respiratory depression, or death may occur during co-administration of buprenorphine and other CNS depressants. Prior to concurrent use of buprenorphine in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Evaluate the patient's use of alcohol or illicit drugs. It is recommended that the injectable buprenorphine dose be halved for patients who receive other drugs with CNS depressant effects; for the buprenorphine transdermal patch, start with the 5 mcg/hour patch. Monitor patients for sedation or respiratory depression.
    Bupropion: (Moderate) Concomitant use of hydrocodone with bupropion may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of bupropion could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If bupropion is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP2D6. Bupropion is a strong inhibitor of CYP2D6.
    Bupropion; Naltrexone: (Major) The opiate antagonists naloxone and naltrexone are pharmacologic opposites of hydrocodone. These drugs can block the actions of hydrocodone and, if administered to patients who have received chronic hydrocodone, can produce acute withdrawal and/or reduce the analgesic effect of hydrocodone. (Moderate) Concomitant use of hydrocodone with bupropion may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of bupropion could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If bupropion is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP2D6. Bupropion is a strong inhibitor of CYP2D6.
    Buspirone: (Moderate) Concomitant use of hydrocodone with other central nervous system depressants, such as buspirone, can potentiate the effects of hydrocodone and may lead to additive CNS or respiratory depression. If hydrocodone is used with buspirone, the dose of one or both drugs should be reduced. (Moderate) The combination of buspirone and other CNS depressants, such as the sedating H1-blockers (sedating antihistamines), may increase the risk for sedation.
    Butabarbital: (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities.
    Butalbital; Acetaminophen: (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities.
    Butalbital; Acetaminophen; Caffeine: (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities.
    Butalbital; Acetaminophen; Caffeine; Codeine: (Major) Concomitant use of hydrocodone with barbiturates may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medications with barbiturates to only patients for whom alternative treatment options are inadequate. It is recommended to avoid this combination when hydrocodone is being used for cough. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, concomitant use of hydrocodone with a barbiturate can decrease hydrocodone concentrations; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. Monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal. Discontinuation of a barbiturate may increase the risk of opioid-related adverse reactions, such as fatal respiratory depression. Barbiturates induce CYP3A4; hydrocodone is a CYP3A4 substrate. (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Additive CNS depression may occur if barbiturates are co-used with sedating antihistamines, such as chlorpheniramine. Monitor for additive CNS and respiratory effects, and warn about the potential effects to driving and other activities. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Butorphanol: (Major) Avoid the concomitant use of butorphanol and opiate agonists, such as hydrocodone. Butorphanol is a mixed opiate agonist/antagonist that may block the effects of opiate agonists and reduce analgesic effects of hydrocodone. Butorphanol may cause withdrawal symptoms in patients receiving chronic opiate agonists. Concurrent use of butorphanol with other opiate agonists can cause additive CNS, respiratory, and hypotensive effects. The additive or antagonistic effects are dependent upon the dose of the opiate agonist used; antagonistic effects are more common at low to moderate doses of the opiate agonist. (Moderate) Concomitant use of butorphanol with sedating H1-blockers can potentiate the effects of butorphanol on CNS and/or respiratory depression. Use together with caution. If a CNS depressant needs to be used with butorphanol, use the smallest effective dose and the longest dosing frequency of butorphanol.
    Calcium, Magnesium, Potassium, Sodium Oxybates: (Major) Concomitant use of opioid agonists with sodium oxybate may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opioid pain medication with sodium oxybate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome.
    Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Cannabidiol: (Moderate) Concomitant use of opioid agonists with cannabidiol may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking cannabidiol. Limit the use of opioid pain medications with cannabidiol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Monitor for excessive sedation and somnolence during coadministration of cannabidiol and sedating H1-blockers. CNS depressants can potentiate the effects of cannabidiol.
    Capsaicin; Metaxalone: (Major) Concomitant use of opioid agonists with metaxalone may cause excessive sedation and somnolence. Limit the use of opioid pain medications with metaxalone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking metaxalone. Also monitor patients for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs. The concomitant use of opioids with other drugs that affect the serotonergic neurotransmitter system has resulted in serotonin syndrome. (Moderate) Concomitant administration of metaxalone with other CNS depressants can potentiate the sedative effects of either agent.
    Captopril; Hydrochlorothiazide, HCTZ: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Carbamazepine: (Moderate) Concomitant use of hydrocodone with carbamazepine can decrease hydrocodone levels; this may result in decreased efficacy or onset of a withdrawal syndrome in patients who have developed physical dependence. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal; consider increasing the dose of hydrocodone as needed. If carbamazepine is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs or respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and carbamazepine is a strong CYP3A4 inducer.
    Carbetapentane; Chlorpheniramine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including sedating h1-blockers. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Chlorpheniramine; Phenylephrine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including sedating h1-blockers. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Diphenhydramine; Phenylephrine: (Moderate) Concomitant use of opioid agonists with diphenhydramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with diphenhydramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including sedating h1-blockers. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Guaifenesin: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including sedating h1-blockers. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Guaifenesin; Phenylephrine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including sedating h1-blockers. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Phenylephrine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including sedating h1-blockers. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Phenylephrine; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including sedating h1-blockers. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Pseudoephedrine: (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including sedating h1-blockers. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbetapentane; Pyrilamine: (Moderate) Concomitant use of opioid agonists with pyrilamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with pyrilamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including sedating h1-blockers. (Moderate) Drowsiness has been reported during administration of carbetapentane. An enhanced CNS depressant effect may occur when carbetapentane is combined with other CNS depressants including morphine.
    Carbidopa; Levodopa; Entacapone: (Moderate) COMT inhibitors should be given cautiously with other agents that cause CNS depression, including sedating H1-blockers, due to the possibility of additive sedation. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment. Patients should be advised to avoid driving or other tasks requiring mental alertness until they know how the combination affects them.
    Carbinoxamine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Carbinoxamine; Dextromethorphan; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Carbinoxamine; Hydrocodone; Phenylephrine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Carbinoxamine; Hydrocodone; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Carbinoxamine; Phenylephrine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Carbinoxamine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with carbinoxamine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with carbinoxamine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Cariprazine: (Moderate) Concomitant use of opioid agonists like hydrocodone with cariprazine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with cariprazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Avoid prescribing opioid cough medication in patients taking cariprazine.
    Carisoprodol: (Major) Concomitant use of opioid agonists with carisoprodol may cause excessive sedation and somnolence. Limit the use of opioid pain medications with carisoprodol to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking carisoprodol. (Moderate) Carisoprodol is metabolized to meprobamate, a significant CNS depressant. Carisoprodol can cause additive CNS depression if used concomitantly with other CNS depressants. Additive effects of sedation and dizziness, which can impair the ability to undertake tasks requiring mental alertness, may occur if carisoprodol is taken with sedating H1-blockers. Utilize appropriate caution if carisoprodol is coadministered with another CNS depressant.
    Castor Oil: (Minor) Concurrent use of hydrocodone with strong laxatives that rapidly increase gastrointestinal motility, such as castor oil, may decrease hydrocodone absorption. Closely monitor patients for changing analgesic requirements or adverse events.
    Celecoxib: (Moderate) A dosage adjustment may be warranted for chlorpheniramine if coadministered with celecoxib due to the potential for celecoxib to enhance the exposure and toxicity of chlorpheniramine. Celecoxib is a CYP2D6 inhibitor, and chlorpheniramine is a CYP2D6 substrate. (Moderate) Concomitant use of hydrocodone with celecoxib may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of celecoxib could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If celecoxib is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP2D6. Celecoxib is an inhibitor of CYP2D6.
    Cenobamate: (Moderate) Concomitant use of hydrocodone with cenobamate may cause excessive sedation and somnolence. Limit the use of hydrocodone with cenobamate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. Avoid prescribing hydrocodone cough medication in patients taking cenobamate. Additionally, monitor for reduced efficacy of hydrocodone and signs of opioid withdrawal in patients who have developed physical dependence if coadministration with cenobamate is necessary; consider increasing the dose of hydrocodone as needed. If cenobamate is discontinued, consider a dose reduction of hydrocodone and frequently monitor for signs of respiratory depression and sedation. Hydrocodone is a CYP3A4 substrate and cenobamate is a moderate CYP3A4 inducer. Concomitant use can decrease hydrocodone concentrations. (Moderate) Monitor for excessive sedation and somnolence during coadministration of cenobamate and sedating H1-blockers. Concurrent use may result in additive CNS depression.
    Ceritinib: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of ceritinib is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like ceritinib can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If ceritinib is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Cetirizine: (Moderate) Concomitant use of opioid agonists with cetirizine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with cetirizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Due to the duplicative and additive pharmacology, concurrent use of cetirizine/levocetirizine with sedating H1-blockers should generally be avoided. Coadministration may increase the risk of anticholinergic and CNS depressant-related side effects. If concurrent use is necessary, monitor for excessive anticholinergic effects, sedation, and somnolence.
    Cetirizine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with cetirizine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with cetirizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Due to the duplicative and additive pharmacology, concurrent use of cetirizine/levocetirizine with sedating H1-blockers should generally be avoided. Coadministration may increase the risk of anticholinergic and CNS depressant-related side effects. If concurrent use is necessary, monitor for excessive anticholinergic effects, sedation, and somnolence.
    Chlophedianol; Dexbrompheniramine: (Moderate) Concomitant use of opioid agonists with dexbrompheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexbrompheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with dexchlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with dexchlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chloral Hydrate: (Major) Concomitant use of opioid agonists with chloral hydrate may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking chloral hydrate. Limit the use of opioid pain medications with chloral hydrate to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression.
    Chloramphenicol: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of chloramphenicol is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like chloramphenicol can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If chloramphenicol is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Chlorcyclizine: (Moderate) Concomitant use of opioid agonists with chlorcyclizine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorcyclizine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlordiazepoxide: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Chlordiazepoxide; Amitriptyline: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Chlordiazepoxide; Clidinium: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines. (Moderate) Monitor patients for signs of urinary retention or reduced gastric motility when hydrocodone is used concomitantly with an anticholinergic drug. The concomitant use of hydrocodone and anticholinergic drugs may increase risk of urinary retention and/or severe constipation, which may lead to paralytic ileus. Opiates increase the tone and decrease the propulsive contractions of the smooth muscle of the gastrointestinal tract. Prolongation of the gastrointestinal transit time may be the mechanism of the constipating effect.
    Chloroprocaine: (Minor) Due to the CNS depression potential of all local anesthetics, they should be used with caution with other agents that can cause respiratory depression, such as opiate agonists.
    Chlorothiazide: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Chlorpheniramine; Codeine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpheniramine; Dihydrocodeine; Pseudoephedrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpheniramine; Guaifenesin; Hydrocodone; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpheniramine; Hydrocodone; Phenylephrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpheniramine; Hydrocodone; Pseudoephedrine: (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Chlorpromazine: (Major) Concomitant use of opioid agonists with chlorpromazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking chlorpromazine. Limit the use of opioid pain medications with chlorpromazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Additive anticholinergic and sedative effects may be seen when chlorpromazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines.
    Chlorthalidone: (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Chlorthalidone; Clonidine: (Major) Concomitant use of opioid agonists with clonidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clonidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. (Moderate) Monitor for decreased diuretic efficacy and additive orthostatic hypotension when thiazide diuretics are administered with hydrocodone. Adjustments to diuretic therapy may be needed in some patients. The efficacy of diuretics may be reduced due to opioid-induced release of antidiuretic hormone.
    Chlorzoxazone: (Major) Concomitant use of opioid agonists with chlorzoxazone may cause excessive sedation and somnolence. Limit the use of opioid pain medications with chlorzoxazone to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce initial dosage and titrate to clinical response; use the lowest effective doses and minimum treatment durations. Avoid prescribing opioid cough medication in patients taking chlorzoxazone. (Moderate) Additive CNS depression is possible if chlorzoxazone is used concomitantly with other CNS depressants including sedating H1-blockers. Additive effects of sedation and dizziness can occur, which can impair the ability to undertake tasks requiring mental alertness. Dosage adjustments of one or both medications may be necessary.
    Cimetidine: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of cimetidine is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP2D6 and CYP3A4 substrate, and coadministration with CYP2D6 and CYP3A4 inhibitors like cimetidine can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced with a combined CYP2D6 and CYP3A4 inhibitor. If cimetidine is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Cinacalcet: (Moderate) Concomitant use of hydrocodone with cinacalcet may increase hydrocodone plasma concentrations and prolong opioid adverse reactions, including hypotension, respiratory depression, profound sedation, coma, and death. It is recommended to avoid this combination when hydrocodone is being used for cough. If coadministration is necessary, monitor patients closely at frequent intervals and consider a dosage reduction of hydrocodone until stable drug effects are achieved. Discontinuation of cinacalcet could decrease hydrocodone plasma concentrations, decrease opioid efficacy, and potentially lead to a withdrawal syndrome in those with physical dependence to hydrocodone. If cinacalcet is discontinued, monitor the patient carefully and consider increasing the opioid dosage if appropriate. Hydrocodone is a substrate for CYP2D6. Cinacalcet is a strong inhibitor of CYP2D6.
    Ciprofloxacin: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of ciprofloxacin is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like ciprofloxacin can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If ciprofloxacin is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Citalopram: (Moderate) Serotonin syndrome can occur during concomitant use of opiate agonists like hydrocodone with serotonergic drugs, such as citalopram. Symptoms may occur hours to days after concomitant use, particularly after dose increases. Serotonin syndrome may occur within recommended dose ranges. Inform patients taking this combination of the possible increased risk and monitor for the emergence of serotonin syndrome. Discontinue all serotonergic agents and initiate symptomatic treatment if serotonin syndrome occurs.
    Clarithromycin: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of clarithromycin is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like clarithromycin can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If clarithromycin is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Clemastine: (Moderate) Concomitant use of opioid agonists with clemastine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clemastine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Clobazam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Additionally, the metabolism of hydrocodone to its active metabolite, hydromorphone, is dependent on CYP2D6. Theoretically, co-administration of hydrocodone and a CYP2D6 inhibitor, such as clobazam, may result in a reduction in the analgesic effect of hydrocodone. Avoid opiate cough medications in patients taking benzodiazepines. (Moderate) Clobazam, a benzodiazepine, may cause drowsiness or other CNS effects. Additive drowsiness may occur when clobazam is combined with CNS depressants such as sedating H1-blockers. In addition, caution is recommended when administering clobazam with medications extensively metabolized by CYP2D6 such as diphenhydramine because clobazam has been shown to inhibit CYP2D6 in vivo and may increase concentrations of drugs metabolized by this enzyme.
    Clonazepam: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Clonidine: (Major) Concomitant use of opioid agonists with clonidine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with clonidine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Clopidogrel: (Moderate) Coadministration of opioid agonists, such as hydrocodone, delay and reduce the absorption of clopidogrel resulting in reduced exposure to active metabolites and diminished inhibition of platelet aggregation. Consider the use of a parenteral antiplatelet agent in acute coronary syndrome patients requiring an opioid agonist. Coadministration of intravenous morphine decreased the Cmax and AUC of clopidogrel's active metabolites by 34%. Time required for maximal inhibition of platelet aggregation (median 3 hours vs. 1.25 hours) was significantly delayed; times up to 5 hours were reported. Inhibition of platelet plug formation was delayed and residual platelet aggregation was significantly greater 1 to 4 hours after morphine administration.
    Clorazepate: (Major) Concomitant use of opiate agonists with benzodiazepines may cause respiratory depression, hypotension, profound sedation, and death. Limit the use of opiate pain medications with benzodiazepines to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. If hydrocodone is initiated in a patient taking a benzodiazepine, reduce initial dosage and titrate to clinical response; for hydrocodone extended-release products, initiate hydrocodone at 20% to 30% of the usual dosage. If a benzodiazepine is prescribed for an indication other than epilepsy in a patient taking an opiate agonist, use a lower initial dose of the benzodiazepine and titrate to clinical response. Educate patients about the risks and symptoms of respiratory depression and sedation. Avoid opiate cough medications in patients taking benzodiazepines.
    Clozapine: (Moderate) Clozapine exhibits clinically significant anticholinergic effects and sedation that may be additive with other medications that may cause anticholinergic effects and sedation, including antihistamines such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines and to avoid tasks requiring mental alertness until they are aware of the effects of the combination. (Moderate) Concomitant use of hydrocodone with other CNS depressants, such as clozapine, may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. In addition, combining clozapine with opiate agonists may lead to additive effects on intestinal motility or bladder function.
    Cobicistat: (Moderate) Caution is warranted when cobicistat is administered with chlorpheniramine as there is a potential for elevated chlorpheniramine and cobicistat concentrations. Chlorpheniramine is a CYP2D6 substrate/inhibitor. Cobicistat is a substrate/inhibitor of CYP2D6. (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of cobicistat is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP2D6 and CYP3A4 substrate, and coadministration with CYP2D6 and CYP3A4 inhibitors like cobicistat can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced with a combined CYP2D6 and CYP3A4 inhibitor. If cobicistat is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Codeine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Codeine; Guaifenesin: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Codeine; Guaifenesin; Pseudoephedrine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Codeine; Phenylephrine; Promethazine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking promethazine. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Additive anticholinergic and sedative effects may be seen when promethazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    Codeine; Promethazine: (Major) Concomitant use of hydrocodone with other CNS depressants may lead to hypotension, profound sedation, coma, respiratory depression and death. Prior to concurrent use of hydrocodone in patients taking a CNS depressant, assess the level of tolerance to CNS depression that has developed, the duration of use, and the patient's overall response to treatment. Consider the patient's use of alcohol or illicit drugs. Hydrocodone should be used in reduced dosages if used concurrently with a CNS depressant; initiate hydrocodone at 20 to 30% of the usual dosage in patients that are concurrently receiving another CNS depressant. Also consider a using a lower dose of the CNS depressant. Monitor patients for sedation and respiratory depression. (Major) Concomitant use of opioid agonists with promethazine may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking promethazine. Limit the use of opioid pain medications with promethazine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, reduce the opioid dose by one-quarter to one-half; use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. (Moderate) Additive anticholinergic and sedative effects may be seen when promethazine is used with first generation antihistamines, such as chlorpheniramine. Patients should be informed to read non-prescription cough and cold product labels carefully for additional interacting antihistamines. (Moderate) Concomitant use of opioid agonists with chlorpheniramine may cause excessive sedation and somnolence. Limit the use of opioid pain medication with chlorpheniramine to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect.
    COMT inhibitors: (Major) Concomitant use of opioid agonists with COMT inhibitors may cause excessive sedation and somnolence. Avoid prescribing opioid cough medications in patients taking COMT inhibitors. Limit the use of opioid pain medications with COMT inhibitors to only patients for whom alternative treatment options are inadequate. If concurrent use is necessary, use the lowest effective doses and minimum treatment durations needed to achieve the desired clinical effect. Educate patients about the risks and symptoms of excessive CNS depression. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment. (Moderate) COMT inhibitors should be given cautiously with other agents that cause CNS depression, including sedating H1-blockers, due to the possibility of additive sedation. COMT inhibitors have also been associated with sudden sleep onset during activities of daily living such as driving, which has resulted in accidents in some cases. Prescribers should re-assess patients for drowsiness or sleepiness regularly throughout treatment, especially since events may occur well after the start of treatment. Patients should be advised to avoid driving or other tasks requiring mental alertness until they know how the combination affects them.
    Conivaptan: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of conivaptan is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A substrate, and coadministration with CYP3A inhibitors like conivaptan can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If conivaptan is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Crizotinib: (Moderate) Consider a reduced dose of hydrocodone with frequent monitoring for respiratory depression and sedation if concurrent use of crizotinib is necessary. It is recommended to avoid this combination when hydrocodone is being used for cough. Hydrocodone is a CYP3A4 substrate, and coadministration with CYP3A4 inhibitors like crizotinib can increase hydrocodone exposure resulting in increased or prolonged opioid effects including fatal respiratory depression, particularly when an inhibitor is added to a stable dose of hydrocodone. These effects could be more pronounced in patients also receiving a CYP2D6 inhibitor. If crizotinib is discontinued, hydrocodone plasma concentrations will decrease resulting in reduced efficacy of the opioid and potential withdrawal syndrome in a patient who has developed physical dependence to hydrocodone.
    Crofelemer: (Moderate) Pharmacodynamic interactions between crofelemer and opiate agonists are theoretically possible. Crofelemer does not affect GI motility mechanisms, but does have antidiarrheal effects. Patients taking medications that decrease GI motility, such as opiate agonists, may be at greater risk